Publikasjoner

2021

Produksjon av biogass fra husdyrgjødsel er et godt eksempel på et bærekraftig bioenergisystem: Det gir en sirkulær økonomi i form av lokal produksjon av organisk biogjødsel, samtidig som biogass kan brukes til å produsere varme, elektrisitet eller drivstoff. I tillegg bidrar det til å redusere lukt og metanutslipp fra lagring av husdyrgjødsel, og kan minimere avrenning som kan forårsake vannforurensning. Så hva skyldes det at husdyrgjødselressurser i liten grad brukes til biogassproduksjon? Egenskapene til gjødsel avhenger blant annet av husdyrtypen og gårdsdriften, noe som gir stor variasjon i  egenskapene til tilgjengelige gjødselressurser og kostnadene knyttet til å produsere biogass produsert fra husdyrgjødsel. For å illustrere dette har IEA Bioenergy publisert denne rapporten som undersøker potensialet for utnyttelse av husdyrgjødsel i biogassanlegg i syv land: Tyskland, Australia, Østerrike, Norge, Canada, Irland og Storbritannia. Disse landene har store variasjoner i type og omfang av biogassindustri, landbrukspraksis og klimatiske forhold. Håpet er at dette spekteret kan bidra til økt kunnskap  om biogassproduksjon fra husdyrgjødsel som kan være relevant for mange land globalt.

2021

Matsvinnet fra matbransjen, offentlig sektor og husholdningene utgjorde 400 000 tonn i 2020.

Dette kan omregnes til:

  • 75 kg matsvinn per innbygger og år.
  • 1,1 millioner kg spiselig mat i søpla hver dag.

Og tilsvarer:

  • Et årlig klimaavtrykk på ca. 1,3 millioner tonn CO2-ekv.
  • Et årlig økonomisk tap på over 20 milliarder.

Fordelingen av totalt matsvinn (tonn) i 2020 for de ulike verdikjedeleddene er vist i figuren under. Figuren viser også endringen i prosent fra 2015 til 2020 (målt i kg/innbygger).

Matsvinnet er redusert for samtlige av verdikjedeleddene, og totalt er matsvinnet:

  • Redusert med 9 % målt i kg per innbygger.
  • Redusert med 6 % målt i tonn.

Dette tilsvarer:

  • En reduksjon i klimaavtrykket på 8 %.
  • En reduksjon i det økonomiske tapet på 10 %.

Matsvinnet er mest redusert for relativt klimaintensive og dyre matvarer (kjøtt, ferdigmat og meierivarer), og minst for relativt billige og lite klimaintensive matvarer (brød, bakervarer, frukt og grønnsaker).

2021

This report documents the modelling and environmental results for 8 products from Borregaard in Sarpsborg. The work has been performed from March 2020 to June 2021, and it is directly based on the work done in phase I/II in 2008, the 2010 update and the 2015 update. In this study life cycle assessment (LCA) methodology has been used.

For most indicators and products, the burdens have decreased compared with 2014. It is, however, difficult to draw conclusions regarding the lignosulfonates, as the LCA model has changed since the 2014 modelling. Steam, chemicals and direct emissions are the most important explanations for changed burdens for Borregaard’s products. Reduced direct emissions from the ethanol factory have contributed to reduced eutrophication burdens for several products.

The relative burdens of the life cycle phases are shown in Figure 1.

Figure 1    Relative results for the life cycle phases, from cradle to gate for four products from Borregaard, shown for the two indicators climate change and eutrophication. For the eutrophication indicator, the life cycle phase ‘Various’ is closely linked to direct emissions from Borregaard. Transport to customer is not included.

Burdens from production of liquid natural gas (LNG) and the use of LNG in the production process are important contributors to the climate change indicator for cellulose and ethanol. Production and transport of input chemicals are important for vanillin and hydrochloric acid, both with regards to climate change and eutrophication. Direct emissions at the Borregaard site are, however, the main contributor to eutrophication both for cellulose, ethanol, and vanillin.

Use of energy and chemicals, and direct emissions at the Borregaard site, are the most important contributors in the overall picture, and the share of renewable energy sources used for steam production affects all products.

  • More use of electricity on behalf of LNG can reduce the climate burdens for the whole product portfolio, and most of all for cellulose, ethanol and lignosulfonate liquid. 
  • More use of internally produced sodium hydroxide has the potential to affect the burdens of several Borregaard products, and especially cellulose and vanillin.
2021

Bergen kommune ønsket å gjennomføre et pilotprosjekt for å sette fokus på reduksjon av matsvinn ved to sykehjem. De to sykehjemmene var Fantoft og Lyngbøtunet.

Å redusere matsvinn er politisk forankret i Bergen kommune i Byrådets politiske plattform og vedtatte handlingsplan for mat, måltider og ernæringsarbeid i pleie- og omsorgstjenesten «Maten servert (2018-2023)».


Bergen kommune ønsket å kartlegge matsvinnet ved de to sykehjemmene Fantoft og Lyngbøtunet, implementere felles metoder og rutiner, kompetanseheving og etablering av en felles kultur for reduksjon av matsvinn. Kommunen ønsket bistand til oppstartsamling, sammenstilling av data etter to veierunder, en workshop for å identifisere og prioritere tiltak for å redusere matsvinn, og en felles workshop for å oppsummere resultatene. På begge sykehjemmene ble det frikjøpt en mindre stillingsprosent som fikk ansvaret for å pilotere prosjektet ved det enkelte sykehjem. Prosjektet er finansiert av Bergen kommune.

Prosjektet ble delt inn i 4 faser:
• Situasjonsanalyse med gjennomføring av måling av matsvinn, og sammenstilling av resultatene
• Planlegging og prioritering av tiltak hvor det ble gjennomført to separate workshoper med relevante ansatte på Fantoft og Lyngbøtunet for å identifisere og prioritere tiltak
• Gjennomføring med innføring av nye rutiner og tiltak for å redusere matsvinn og kompetanseheving
• Evaluering hvor det i forkant ble gjennomført en ny periode med måling av matsvinn, og gjennomføring av en felles workshop for ansatte på kjøkkenet og avdelingene ved de to sykehjemmene, Matvarehuset, og representanter fra Klimaetaten i Bergen kommune.


Å redusere matsvinnet i omsorgssektoren der det serveres mat vil, i tillegg til reduserte klimagassutslipp, bidra til reduserte innkjøpskostnader, bearbeidingskostnader og lønnskostnader. I tillegg kan svinnreduserende tiltak bidra til bedre holdninger hos ansatte slik at den enkelte får større bevissthet om matsvinn og endrer atferd privat. Svinnreduserende tiltak kan også bidra til bedre utnyttelse av råvarer og utvikling av nye retter med bruk av restemat.

2021

Denne rapporten er en del av forskningsprosjektet Bærekraftig biogass, som er finansiert gjennom Forskningsrådets EnergiX-program.

Opprinnelsesgarantiordningen for elektrisitet er en europeisk ordning som er videreført og styrket i det reviderte fornybardirektivet (2018/2001/EU, ofte referert til som RED II). Ordningen inngår som en del av det felles rammeverket i det indre energimarked i EØS-området. Den ble innført med EUs første fornybardirektiv i 2001 for å gi forbrukere et prinsipielt valg. En opprinnelsesgaranti er et bevis på hvilke kilder en gitt mengde strøm er produsert fra. Ordningen ble innført med EUs første fornybardirektiv (Direktiv 2001/77/EC) i 2001 og er videreført i de reviderte fornybardirektivene (Direktiv 2009/28/EC og 2018/2001/EU). I henhold til EUs Eldirektiv (Direktiv 2009/72/EC) skal alle kraftleverandører informere sine kunder om hvordan kraften de solgte foregående år ble produsert. Dette kalles en varedeklarasjon.

I det reviderte fornybardirektivet av 2018 (RED II, Artikkel 19) er ordningen for opprinnelsesgarantier utvidet til også å omfatte gass (inkludert hydrogen), i tillegg til elektrisitet og varme/kjøling.

Den viktigste forskjellen mellom et opprinnelsesgarantisystem for elektrisitet (som eksisterer i dag) og for biogass, er bærekraftskriteriene med tilhørende krav til massebalanse, som kreves for bioenergi dersom den skal kunne inkluderes i et lands måloppnåelse for fornybar energi.

Det pågår et arbeid med å revidere CEN-standarden EN 16325 Guarantees of Origin related to energy – Guarantees of Origin for Electricity til også å omfatte gass, hydrogen, samt kjøling/varme, som antas ferdigstilt i løpet av 2022. Vurderingen av opprettelsen av et system med opprinnelsesgarantier for biogass bør derfor avventes og sees i sammenheng med dette arbeidet. I ovennevnte standard er det foreløpig lagt til grunn at det er frivillig å rapportere på bærekraftskriteriene.

Uavhengig av om det vurderes å innføre et opprinnelsesgarantisystem for biogass, anbefales det derfor å starte arbeidet med å utvikle en nasjonal database/register for flytende og gassformig drivstoff (jfr. RED II/artikkel 28), som inkluderer rapportering av bærekraftskriteriene. Det anbefales at dette arbeidet sees i sammenheng med tilsvarende arbeid som skal settes i gang i Sverige (Energimyndigheten, 2019a), som også har en større andel av sitt biogassvolum offgrid (leveres ikke inn på fells gassnett). I tillegg bør arbeidet med utvikling og oppretting av et slikt register samkjøres med det systemet som Miljødirektoratet i dag har for alle som omsetter biodrivstoff og flytende biobrensel om rapportering oppfyllelse av bærekraftskriteriene, og med dagens rapportering fra norske biogassanlegg til Miljødirektoratet og SSB. Resultatene fra dette arbeidet vil danne et viktig grunnlag for en vurdering av en fremtidig kobling av et slikt registeret til et eventuelt opprinnelsesgarantisystem for biogass.

2021

Målet med dette prosjektet er å få frem et kunnskapsgrunnlag som gjør rede for hva som er de mest miljøvennlige alternativene til engangsprodukter i plast. Kunnskapsgrunnlaget skal være nyttig for innkjøpere av engangsprodukter i Oslo kommunes virksomheter. Målet er å fremheve aspekter som er viktige for miljøbelastningen til produkter av ulikt materiale, som kan påvirkes i innkjøps- og brukssammenheng.

Oslo kommune anskaffer varer til ulike virksomheter. Disse benytter seg av de 10 engangsproduktene som er analysert, men til ulikt formål. Grunnet begrensinger i prosjektet, er det gjort forenklinger av funksjonen til produktene. For eksempel behøves det ulikt materiale eller mengde materiale for hansker, avhengig av om man skal bruke de i kontakt med mat eller til medisinsk formål. Et sykehjem kan dermed ha andre behov enn en barnehage i denne sammenhengen. Denne analysen ser bort ifra tekniske krav som produktet skal oppfylle. Det blir dermed opp til leseren å sette produktene i kontekst, og utelukke alternativene som ikke er relevante for deres tilfeller.

2021

This report is a part of the DGRADE project, funded by the Norwegian Research Council and Handelens Miljøfond. It presents the status of ongoing development of the LCA methodology with respect to plastic littering issues and how plastic products can be eco-designed for the avoidance of littering.

This report first summarises knowledge regarding littering, the reasons for it and its consequences. Thereafter, the inclusion of littering within the current LCA methodology and on-going work is described. Finally, a summarised literature review and synopses of research into the littered environment is presented, laying the foundation of eco-design tips for singe use plastic products for the avoidance of littering. The literature review comprises issues such as the amount, composition and location of the litter; research on the litterer, including social, demographic and behavioural factors; and research concerning littered items with reference such as size, form or design, which might influence littering. The literature review forms the basis for identifying independent considerations with respect to the littering potential of a specific item or product group.

The report concludes with suggestions, pointers and advice concerning eco-design, as a contribution to the work on the reduction of littering of single use plastic articles. These suggestions do not apply solely to single use articles and can be relevant in the case of many other product types.

2021

I februar 2021 ble det publisert en database med klimaavtrykk for over 500 matvarer på det danske markedet. «Den Store klimadatabase» (DSK) er basert på “consequential” LCA-metodikk (CLCA) i motsetning til “attributional” LCA (ALCA). ALCA er den vanligste metode for beregning av klimaavtrykket til produkter. Klimaavtrykkene til storfekjøtt i databasen er uvanlig høye, de er for eksempel 152 kg CO2ekv/kg produkt for indrefilet. For ALCA-resultater i andre publikasjoner ligger klimaavtrykket rundt 22-70 kg CO2ekv/kg produkt og det er klimaavtrykk i denne størrelsesorden som generelt kommuniseres globalt. Det er faglig uenighet om å bruke CLCA for evaluering av klimaavtrykk av produkter og denne rapport vil prøve å skille mellom metodene og diskutere hensiktsmessigheten av CLCA-metoden for å beregne klimaavtrykk av matvarer.

Det er flere metodiske forskjeller mellom de to tilnærminger, og de brukes til å svare på forskjellige spørsmål. I DSK svarer man på spørsmålet om hva klimaavtrykket er hvis produktet velges i stedet for ett annet/hvis etterspørselen øker/reduseres. I ALCA svarer man på spørsmålet om hva klimaavtrykket er for dette produkt. De store forskjellene i metodikk mellom DSK og ALCA er metoden for allokering mellom produkter, bruk av input/output metodikk, beregning av effekt av arealbruksendringer og bruk av marginalbetraktninger. Når en produksjon gir flere produkter må utslippene fordeles mellom produktene. I CLCA brukes systemutvidelse mens man i ALCA som regel bruker økonomisk allokering eller masseallokering. Det brukes også ulike data til beregningene fordi de ulike metodene svarer på ulike spørsmål. CLCA, som brukes i DSK, har som mål å inkludere “alle” påvirkninger fra et produksjonssystem, også indirekte påvirkninger fra f.eks. regnskaps- og revisortjenester som ikke tas med i en ALCA. Klimaavtrykkene i DSK ligger allikevel generelt på samme nivå som for ALCA resultater, men for storfekjøtt ligger resultatene mye høyere på grunn av økonomisk allokering. I DSK er klimaavtrykket for storfekjøtt fordelt på stykningsdelene ut fra økonomisk verdi basert på gjennomsnittlige priser. Hvis f.eks. indrefilet fra storfe står for 5 % av verdien som slakteriet får for alle produktene fra dyret vil indrefileten få 5 % av utslippene, selv om vekten av indrefilet kan være langt lavere, f.eks. 1 %. Dette betyr at jo dyrere stykningsdelen er, jo større andel av utslippene blir den tildelt. Argumentasjonen er at produkter har høy pris p.g.a. høy etterspørsel og derfor må disse produktene også ta sin del av miljøpåvirkningen. I ALCA bruker man også økonomisk allokering. F eks bruker NORSUS økonomisk allokering mellom den delen av dyret som brukes til konsum og den delen som brukes til andre formål, f.eks. plussprodukter som brukes til kjæledyrfôr og som har en økonomisk verdi. Hvis delen som går til mat utgjør 98 % av den økonomiske verdien vil denne delen bli tildelt 98 % av utslippene. Det øvrige vil bli tildelt 2 %. Imidlertid brukes ikke økonomisk allokering mellom delene som brukes til mat. F eks gis samme klimagassutslipp pr kg for kjøttdeig, skinke og indrefilet. Argumentasjon er at når man slakter et dyr må man slakte “hele dyret”.

Det er også viktig å være oppmerksom på andre forskjeller som ikke skyldes forskjeller mellom ALCA og CLCA, f.eks. LCIA og karakteriseringsfaktorene som brukes til å kvantifisere klimagassutslippene. Det finnes ulike versjoner av dem.

I denne rapporten er det også laget en sammenligning av klimaavtrykk av storfe- og svinekjøtt vurdert med CLCA i DSK og ALCA fra vitenskapelig litteratur. CLCA klimaavtrykkene gir generelt høyere resultater enn ALCA. For storfekjøtt skyldes dette hovedsakelig økonomisk allokering av stykningsdeler og for svinekjøtt skyldes det systemutvidelse eller effektivitet i produksjonen. Det er ikke mulig å konkludere på dette ut fra de tilgjengelige dataene.

Internasjonalt er det brukt store ressurser på å utvikle og standardisere LCA-metodikken slik at alle LCA utøvere gjennomfører LCA på samme måte og slik at resultatene enklere kan sammenlignes. Det er imidlertid en vanskelig oppgave fordi standardene er utviklet av ulike organisasjoner på forskjellige tidspunkter. Det finnes derfor en rekke standarder og retningslinjer for hvordan man beregner klimaavtrykk av produkter, og de viktigste er ISO standardene, PAS 2050, GHG Protocol og PEF metodikken. Alle disse standardene anbefaler ALCA for beregning av klimaavtrykk av produkter, men CLCA kan også brukes, avhengig av formålet og omfanget av studien og definisjon av den funksjonelle enheten. Selv om det nå er en klimadatabase for mat basert på CLCA er det usannsynlig at flere databaser vil bli utviklet basert på denne metoden siden alle standarder anbefaler ALCA og ALCA klimaavtrykk for kjøttprodukter vil fortsatt bli brukt som en referanse for deres klimapåvirkning.

2021

Østre Toten kommune ønsket å gjennomføre et prosjekt for å sette fokus på matsvinn og klimavennlig mat i omsorgssektoren. Da prosjektet startet i november 2019 hadde kommunen på det nærmeste ferdigstilt et nytt sykehjem som skulle erstatte to av de eksisterende institusjonene. Det nye sykehjemmet, Labo helse og omsorgssenter, fikk medarbeidere fra fire tidligere kjøkken og tre ulike institusjoner. En annen institusjon, Fjellvoll, ble omgjort til omsorgsboliger med bemanning.


Østre Toten kommune ønsket å implementere felles metoder og rutiner, kompetanseheving og etablering av en felles kultur ved det nye kjøkkenet. Hovedmålet for prosjektet var å redusere klimagassutslipp gjennom å redusere matsvinnet med 20% i løpet av prosjektperioden og innføre mer klimavennlige menyer. Prosjektet er finansiert av Miljødirektoratets klimasatsmidler og Østre Toten kommune.


Prosjektet ble delt inn i 4 faser:
• Situasjonsanalyse med gjennomføring av måling av matsvinn, gjennomføring av intervjuer med relevante ansatte for å kartlegge muligheter og utfordringer for å redusere matsvinn og innføre mer klimavennlige menyer, og sammenstilling av resultatene
• Planlegging og prioritering av tiltak hvor det ble gjennomført en workshop med de ansatte på avdelingene for å identifisere og prioritere tiltak
• Gjennomføring med innføring av nye rutiner for å redusere matsvinn, kompetanseheving innenfor klimavennlig mat for ansatte på kjøkkenet og utarbeidelse av målgruppetilpasset informasjonsmateriell
• Evaluering hvor det i forkant ble gjennomført en ny periode med måling av matsvinn, og gjennomføring av workshoper for ansatte på kjøkkenet og på avdelingene, lederne og en felles workshop for alle hvor målet var å prioritere tiltakene som skulle videreføres.


Å redusere matsvinnet i omsorgssektoren der det serveres mat vil, i tillegg til reduserte klimagassutslipp, bidra til reduserte innkjøpskostnader, bearbeidingskostnader og lønnskostnader. I tillegg kan svinnreduserende tiltak bidra til bedre holdninger hos ansatte slik at den enkelte får større bevissthet om matsvinn og endrer atferd privat. Svinnreduserende tiltak kan også bidra til bedre utnyttelse av råvarer og utvikling av nye retter med bruk av restemat.

2021

Som del av forskertiden sin har Ellen-Marie Forsberg nå ferdigstilt artikkelen Involving older adults in technology research and development discussions through dialogue cafés sammen med kolleger fra hennes tidligere jobb på OsloMet. Artikkelen viser nytten av å involvere eldre i diskusjoner om bruk av smarthus-teknologi og kunstig intelligens for løsninger som kan hjelpe eldre å bo hjemme lenger.

2021

Denne rapporten beskriver resultatene av en miljøvurdering av ølservering med bruk av ulike typer ølglass på festivaler. Prosjektet er gjennomført av NORSUS på oppdrag fra Øyafestivalen. Prosjektet er finansiert av Handelens Miljøfond.

Hovedmålet med prosjektet har vært å bidra til økt kunnskap om miljøpåvirkningen til ulike løsninger for drikkeservering, og dermed bidra til redusert potensiell klimapåvirkning og redusert plastforsøpling ved festivaler og arrangementer.
De fire alternativene som har blitt analysert er:
1a Gjenvinnbare engangsglass av polypropylen (PP)
1b Gjenvinnbare engangsglass av polyethylentereftalat (PET)
2 Komposterbare engangsglass av polylaktat (PLA)
3 Gjenbruksglass av PP

De to miljøpåvirkningskategoriene som er vurdert er potensiell klimapåvirkning og risiko for forsøpling. Risiko for forsøpling er vurdert ved hjelp av massebalanse og en kvalitativ vurdering, mens potensiell klimapåvirkning er vurdert ved hjelp av livsløpsanalyser (life cycle assessment – LCA). Den funksjonelle enheten i analysen er definert som servering av 1000 halvlitere med øl. I livsløpsanalysene er det benyttet to ulike metoder for modellering av gjenvinning: cut-off og systemutvidelse. Begge metodene er definert som gyldige måter å modellere gjenvinning på, og har ulik fremgangsmåte for å fordele byrder og gevinster knyttet til resirkulering mellom første og andre produktsystem. Ved bruk av cut-off favoriseres bruk av resirkulert materiale i produktet som analyseres, mens bruk av systemutvidelse favoriserer gjenvinning av produktet etter bruk. Det finnes også andre modelleringsmåter for gjenvinning, slik som Europakommisjonens Circular Footprint Formula (CFF) i Product Environmental Footprint (PEF)-systemet. De to valgte modelleringsmåtene i denne rapporten representerer to ytterpunkter og bruk av disse bidrar derfor til å teste robustheten til resultatene.

Analysene er gjennomført for to ulike kategorier av festivaler: festivaler med innsamlingssystem og festivaler med innsamlingssystem med ekstra oppsamling. Ekstra oppsamling er frivillige som plukker søppel og kildesorterer avfallet og dermed bidrar til å redusere svinn. Returgrader og svinn i analysen er basert på erfaringstall fra Øyafestivalen med de gitte pante- og gebyrsatser som har vært brukt frem til nå. Det er ikke vurdert hvordan en eventuell endring i pante- eller gebyrsatser vil påvirke resultatene.
Resultatene av analysene viser at følgende tre faktorer er viktige for klimapåvirkning fra ølglassene:
• Hvor mye ny plast må produseres per servering?
• Hvor mye plast sendes til forbrenning?
• Hvor mye gjenvinnes og kan erstatte jomfruelig råvareuttak?
Med andre ord har returgrad og svinn stor påvirkning på resultatene. Disse to faktorene har også betydning for risiko for forsøpling for de ulike alternativene. De kvalitative vurderingene viser at valg av innsamlingssystem på festivalen kan antas å ha større betydning på risikoen for forsøpling enn valg av ølglassalternativ. På bakgrunn av dette anbefales det at festivaler som ønsker å redusere sin miljøbelastning etablerer gode systemer for innsamling av ølglass og kvantifiserer svinn og returgrad, uavhengig av hvilken ølglassløsning de velger. Bransjen som helhet oppfordres til å kvantifisere og følge utviklingen av svinn og returgrad over tid, og å sørge for erfaringsutveksling angående hvilke tiltak som er mest effektive for å redusere svinnet.

Festivaler som i dag har et engangssystem kan oppnå en betydelig klimagevinst ved å innføre et innsamlingssystem og sende glassene til materialgjenvinning, for eksempel gjennom en panteordning.
For festivaler med ekstra oppsamling er svinnprosenten betydelig lavere enn for de som ikke har det. Dette viser at innsatsen til frivillige har en betydelig miljønytte.
For festivaler med ekstra oppsamling gir gjenbruksglass av PP og engangsglass av PET med minimum 80% resirkulert materiale best resultat.

For festivaler uten ekstra oppsamling gir engangsglass av PP og engangsglass av PET med minimum 50% resirkulert materiale best resultat.

Høy innsamlings- og oppsamlingsgrad er enda viktigere for klimapåvirkningen for gjenbruksglass, som er tykkere og dermed består av mer plast, enn for engangsglass. Sensitivitetsanalysene viste at svinnet for gjenbruksløsningen må være under 15% for at den skal være bedre enn engangsglass PP med gjenvinningssystem. Årsaken til dette er at samme svinnprosent av ølglass i de to systemene gir større tap av plast for gjenbruksglass, noe som medfører både høyere forbrenningsutslipp og behov for mer plast inn i systemet sammenlignet med engangsglass.
Formålet med denne rapporten har vært å belyse miljøperspektivet knyttet til løsninger for drikkeservering på festivaler. Når det skal tas en beslutning om hvilken ølglassløsning som skal velges, vil det være nødvendig å se resultatene i sammenheng med andre aspekter, slik som økonomi og praktiske forhold.

2021

This report is a deliverable for the Dsolve Centre for Research-based Innovation (CRI), Work Area 5 Circularity of bio-based, biodegradable, and non-degradable plastics. More specifically, this report documents Tasks 5.1.1 and 5.3.2.
The existing mass flow research concerning the fate of plastics in fishing gear used in the Norwegian commercial fishing and aquaculture industry is summarised in this report. Loss of fishing gear and aquaculture equipment can lead to ghost fishing and emission of microplastics affecting life below water.

Plastic flows in commercial fishing gear and aquaculture can be categorized in four groups: a) new fishing gear, b) repaired materials, c) collected gear delivered to waste treatment, and d) lost equipmentseparated into loss from wear and tear, documented loss, and undocumented loss. Figure 1 gives an overview of the quantified and unquantified flows of plastics in the commercial fishing and aquaculture industry.

2021

Biodiversity together with global warming and impacts caused by emissions of nitrogen compoundswas back in 2009 identified as the most important areas of concern for the sustainable future of humankind (Rockström et al., 2009). Now, the decline of biodiversity in the world is high on the political agenda as our livelihoods and well-being all depend on healthy ecosystems and recent studies report that global biodiversity is declining at rates unprecedented in human history (Dasgupta, 2021; IPBES, 2019). Thus, when assessing environmental impact of products and systems, including biodiversity impacts are of high importance.


Research to develop a suitable method to include biodiversity in life cycle assessment (LCA) has been and is on-going. However, the current Product Environmental Footprint (PEF) methods do not include an impact category named «biodiversity”. However an assessment of the relevance of biodiversity when developing a PEFCR shall be made and if biodiversity is relevant, then a description shall be included of how this biodiversity impact shall be assessed (European Comission, 2018). Suggestions are to use a certification scheme as proxy or to state how much of the materials in the study that comes from ecosystems where biodiversity is maintained and/or are increased, and to set a level of how much the biodiversity can be affected, e.g. 15% loss of species richness due to disturbance. It would be beneficial for the comparability of PEF studies if one method were used for biodiversity instead of having the option to choose method. There are working groups set up by the European commission that is currently reviewing biodiversity methods with the aim to recommend an approach to be included in the PEF guidelines.


The report is prepared by the NordPEF group and briefly reviews the ongoing work on biodiversity methods for inclusion in LCA and include case studies from the Nordic countries using some of these methods. The benefits and drawbacks with the methods and suggest improvements from a Nordic perspective is also included, however not on detailed methodological level. The NordPEF group works on issues regarding the implementation of Product Environmental Footprint (PEF) in agricultural sector in the Nordics. The group consist of Anna Woodhouse, RISE (Sweden); Sanna Hietala, LUKE (Finland); Troels Kristensen, Aarhus University (Denmark) and Hanne Møller, NORSUS
(Norway). The work is funded by the Nordic Council of Ministries and national ministries (MMM/FI) and environmental protection agencies (EPA/SWE) via the Nordic Environmental Footprint (NEF) group. This report is not exhaustive within this topic and descriptions are based on experiences that the participants of the group have as LCA practitioners.

2021

There is an increasing interest in reusable bottles as an alternative to single-use packaging from the perspective of assumed reduced littering, waste generation and environmental impacts. In the assessment of a possible shift from single use to reusable bottles, it is important to apply a systems perspective to avoid potential trade-offs between various impacts. Life cycle assessment (LCA) is commonly applied to assess the life cycle impacts of products, typically including the processes of raw material extraction, production, use phase as well as waste management of the products assessed. The goal of this study is to review LCAs of reuse systems for bottles as well as the current European practice in such reuse systems. A recent review of LCAs of reuse systems was applied as the point of departure and complemented by recently published LCA studies. The focus of the review was on methodological aspects and on empirical data for trip rates, i.e., the number of times that the bottle is used during its lifetime. In total, nine LCAs of reuse systems and four European reuse system actors were included in the review as well as some additional highly relevant reports on trip rates.

Several aspects were highlighted as important in the reviewed LCAs of reuse systems. These include the size and composition of beverage packaging, trip rate, transportation distance between retailers and manufacturers, as well as the modelling of end of life of packaging materials, including collection rates. It is important that all these aspects are considered, that the data applied for the compared systems are selected, and that the interpretation of the study results are made, in line with the study goal, which can be to e.g. to compare current or potential future reuse and recycling systems. For example, the collection rate of the packaging in the systems assessed, in turn affected by the type of collection system in place, is one important and sensitive parameter both for single-use and reusable beverage packaging. The reason for this is that the collection rate affects the recycling rate, trip rate and littering rate in the respective single-use and reuse systems. However, detailed discussions on various collection systems, their varying collection rates, or potentials for improving these systems are rarely provided in the reviewed studies. When different collection systems are applied for the compared reuse and single-use bottle systems (e.g. a deposit for reusable bottlesand a voluntary system for single-use bottles), different collection rates will typically occur. A direct comparison of the environmental impact for such systems might therefore be misleading unless the difference in collection rates between the systems are described and in line with the study goal. If the goal of a study is to compare potential future bottle systems, the collection systems applied should be carefully selected to ensure a comparison focusing on differences between the bottle systems (e.g. single-use bottles which are collected for material recycling and converted to raw material for new bottles, or reusable bottles which are collected for refilling), rather than on differences reflecting the underlying collection systems. This is especially important when there are no clear arguments for why the selected collection systems should be different for the bottle systems assessed. However, if the goal is to compare the impact of existing bottle systems, the collection systems applied for the respective bottle systems should be used. Nevertheless, important aspects, such as the collection systems applied for the compared systems, their related collection rates as well as their impact on the results should be acknowledged.


Other important aspects such as social and economic ones were also identified in the reviewed studies. Littering, which commonly is highlighted as an issue related to single-use plastic products, were only assessed in one of the reviewed studies. This literature review is non-exhaustive but provides an overview of recently published LCAs of reuse systems for bottles. The results from this study can provide recommendations to LCA practitioners in conducting future LCAs of reuse systems for bottles to be compared to single-used bottles, as well as to beverage packaging actors, such as reuse system actors.

2021

Denne rapporten er en del av prosjektet Mulighetsstudie CCS-klynga på Øra og regionalt, støttet av CLIMIT.
Utslipp av klimagasser fra menneskelig aktivitet er en av de viktigste miljøutfordringene i dette århundret. Den største kilden til klimagassutslipp er karbondioksid, en klimagass som har økt dramatisk de siste tiår, hovedsaklig som følge av bruk av fossil energi til energi og transport. CCS (carbon capture and storage/karbonfangst og lagring) er en måte å redusere klimagassutslipp på ved å fange og permanent lagre karbondioksid (CO2). CCU (carbon capture and utilization/karbonfangst og bruk) er en måte å resirkulere karbonet i fanget CO2 på ved å konvertere det til brensel eller andre produkter. Forkortelsen CCUS beskriver systemer som inkluderer både bruk og lagring av fanget CO2.
Denne studien har analysert verdikjeder med både CCS (carbon capture and storage) og CCU (carbon capture and utilization), og sammenlignet dem med deres respektive referansescenarier. Studien har benyttet metodikk for livsløpsvurderinger (LCA) i henhold til ISO-standardene 14044/48 og spesifikke retningslinjer for LCA av CCU-verdikjeder. Analysene er gjennomført for to industrielle aktører; anlegget for papirproduksjon ved Norske Skog Saugbrugs og energigjenvinningsanlegget Sarpsborg Avfallsenergi (SAE).

2021

Waste 2 Power (W2P) – høyverdig energigjenvinning av plastavfall» (High quality energy recovery from plastic waste) is a pre-project (forprosjekt) in the regional development program FORREGION funded by the Research Council of Norway and administrated by Viken county council. The project begun with a collaboration between Vaia Miljø AS and NORSUS.

The project aims to understand the potential for commercializing a Waste to Energy prototype or Waste2Power (W2P) acquired by Vaia Miljø from Italy for energy recovery of waste and establish cooperation with relevant R&D actors. The project includes four main tasks covering the techno-economic analysis of the W2P technology (task 1), the development of an industrial plan based on the availability of plastic waste (task 2), a simplified environmental analysis by Life Cycle Assessment methodology (task 3), and the development of a plan for further research activities (task 4)”

2020

The article entitled Life cycle sustainability assessment of a novel slaughter concept is now published online in the Journal of Cleaner Production. It presents a Life Cycle Sustainability Assessment study of an innovative slaughter concept, i.e., the Meat Factory Cell, a semi-automated system with human-robot interaction, as compared to a Conventional Slaughter and Cutting Process.

A case study is built which considers the conditions at a Norwegian slaughter facility. Several assumptions are made for the Meat Factory Cell as the concept is still at the developmental phase, and a sensitivity analysis has been employed for highlighting the hotspots in the Life Cycle Sustainability Assessment study. The results show that there is a trade-off between the three dimensions of the life cycle assessment. The Meat Factory Cell concept imposes no drastic changes to the environmental performance compared to the conventional process, while the economic and social LCA results indicate that there is variability among the considered impact categories. For the Life Cycle Costing, the innovative concept makes more sense from a cost perspective for small and medium-size abattoirs than for very large slaughterhouses. The social LCA indicates that a more efficient abattoir system, using the MFC might lead to loss of low qualified jobs but creates opportunities for more qualified personnel. This article has been written by Norsus in collaboration with Animalia (the Norwegian Meat and Poultry Research Centre) and using input data from the industry Nortura.

The authors are: Valente, C., Møller, H., Johnsen, F. M., Saxegård, S., (from Norsus) and Brunsdon, E. R., & Alvseike, O. A. (Animalia). 

Link to the article.

2020

SirkulærPlast-prosjektet har mål om å bidra til at plast fra Østfold kan brukes som råstoff for lokal produksjon av plastprodukter, og oppnå høyere grad av sirkulær økonomi til nytte både for interkommunale avfallsselskaper og plastprodusenter i regionen. Prosjektet skal også indikere hensiktsmessig design av anlegg med hensyn på sirkulær økonomi for håndteringen av plast brukt som nye råvarer i regionen. Denne studien bruker livsløpsvurderingsmetodikk (LCA) for å analysere miljøeffektene tilknyttet bruk av resirkulert plast fra henholdsvis husholdninger, industri og fiskerinæring i utvalgte plastprodukter som består av HDPE og PP. I tillegg er det vurdert et plastprodukt som bruker resirkulerte glasfiberforsterket plast fra jernbane isolatorer.

Produksjon av regranulat fra plastavfall blir sammenlignet med et referansesystem med produksjon av granulat fra jomfruelig plast. Siden bruk av resirkulert plast utgjør en multifunksjon (produksjon av granulat og håndtering av plastavfall), er det viktig at referansesystemet også tilfredsstiller begge disse funksjonene. I tillegg vil begge systemene generere energi fra energigjenvinning av plast (svinn i sorterings- og gjenvinningsprosessene og avfallshåndtering i referansescenariet). Funksjonell enhet må ta hensyn til alle disse funksjonen og er derfor definert som følger: Produksjon av 1 kg granulat, håndtering av X kg plastavfall, og produksjon av Y MJ energi. På grunn av ulik brennverdi og ulikt svinn i verdikjedene for de analyserte plasttyper og verdikjeder, vil X og Y være forskjellige i hver case, og er spesifikt beregnet for de 3 case-produktene.

Resultatene viser at bruk av gjenvunnet plast som erstatning for jomfruelig plastproduksjon kommer best ut for miljøpåvirkningskategoriene klimapåvirkning, forsuring, fotokjemisk ozondannelse, uttømming av fossile abiotiske ressurser og vannfotavtrykk. For miljøpåvirkningskategoriene stratosfærisk ozonnedbryting, overgjødsling, uttømming av mineralske abiotiske ressurser og PM 2,5 og PM > 10, kommer jomfruelig plastproduksjon best ut.

For miljøpåvirkningskategorien klimapåvirkning viser resultatene følgende:

  • En kombinasjon av tiltak som øker mengde gjenvinnbar plast (mindre svinn, økt design for gjenvinning, økt etterspørsel av ulike typer plast) og som øker andel gjenvunnet plast i granulatet vil bidra til forbedret klimaprofil for regranulat. Desto større andel gjenvunnet plast i granulatet, desto bedre klimaprofil vil regranulatet få.
  • Tap av material (svinn) i sorteringsprosessen har en vesentlig innvirkning på (vugge til port) klimaprofilen til regranulat, men det endrer ikke netto klimagevinst mellom systemene for materialgjenvinning og jomfruelig plastproduksjon. Årsaken til dette er at økt svinn krever økt mengde plastavfall inn i begge systemene (for å oppnå funksjonell enhet), og for begge systemene vil denne økte mengden bli sendt til energigjenvinning. Det betyr at begge systemene får økt potensiell klimapåvirkning, og således dårligere resultat. Men som følge av at økningen er lik i begge systemer, blir netto forskjell mellom dem uendret. Økt svinn-andel vil dermed ha stor påvirkning på potensiell klimapåvirkning for selve gjenvinningsverdikjeden (i form av økte transport, sorterings- og energigjenvinningsbelastninger), men endrer ikke netto klimagevinst mellom systemene for materialgjenvinning og jomfruelig plastproduksjon.
  • Studien viser at et høyt svinn gjennom verdikjeden kan medføre at produksjon av regranulat gir høyere klimapåvirkning enn jomfruelig plast isolert sett (vugge til port). Dette får frem viktigheten av å analysere en funksjonell enhet som inkluderer de samme funksjoner for de sammenlignende systemer, og at det er for snevert å kun inkludere én funksjon (produksjon av granulatet) i systemer som omhandler multifunksjonalitet (her: produksjon av granulat og avfallsbehandling av plast).

Denne rapporten åpen. Østfoldforskning har også laget en lukket intern rapport som inneholder alle forutsetninger og data i modellen, som skal ikke offentliggjøres (AR.01.20).

2020

Denne rapporten presenterer noe av arbeidet som er gjennomført i forskningsprosjektet Bærekraftig Biogass og dokumenterer de potensielle klimabelastningene og klimanytten knyttet til produktene og tjenestene som leveres av Den Magiske Fabrikken: biodrivstoff, biogjødsel, bio-CO2 til veksthus, behandling av matavfall og behandling av husdyrgjødsel. Målsetningen med rapporten er samtidig å bidra til en økt forståelse av hvordan LCA-metodikk bør tilpasses formålet med studien for verdikjeder for biogass, og hvilke beslutninger studien skal gi innspill til.

Det er utført fire ulike beregninger med ulike systemgrenser og funksjonell enhet:

  • Organisasjons-LCA: for å synliggjøre hvor i verdikjeden det er størst rom for forbedringer
  • Effekten ved å etablere Den Magiske Fabrikken ved å inkludere både utslipp og unngåtte utslipp i løpet av et år
  • Behandling av ett tonn matavfall ved Den Magiske Fabrikken
  • Produksjon og bruk av drivstoff fra Den Magiske Fabrikken sammenliknet med alternative drivstoff på markedet.

Organisasjons-LCA’en inkluderer utslipp gjennom verdikjeden til alle produktene og tjenestene levert av Den Magiske Fabrikken i løpet av et år. Resultatet ble beregnet til å være 11 821 tonn CO2-ekvivalenter. De største potensialene for utslippsreduksjoner er fra forbrenning av plast i rejekt og utslipp fra renovasjonskjøretøy ved innsamling av matavfall. Utslippene fra forbrenning av rejekt kan reduseres ved å redusere feilsortering, unngå å forbehandle emballert mat og å finne alternative håndteringsmåter for rejektet fra forbehandlingen (for eksempel gjenvinning av plast). Det kan også være aktuelt å vurdere andre poseløsninger for innsamling av matavfall, men da bør det samtidig vurderes hvordan dette påvirker svinn og innsamlingsgraden til matavfall.

Etableringen av Den Magiske Fabrikken ble estimert til å utgjøre en netto utslippsreduksjon på 13 986 tonn CO2-ekvivalenter/år. Denne beregningen inkluderer klimagevinsten ved at produktene fra Den Magiske Fabrikken erstatter andre produkter og at alternativ avfallsbehandling av inngående avfallsressurser erstattes. Dette viser at de sparte utslippene forbundet med anlegget (ca 26 000 tonn CO2-ekvivalenter) er mer enn dobbelt så store som utslippene fra verdikjeden til anlegget (ca 12 000 tonn CO2-ekvivalenter). Biogass som drivstoff som erstatning for diesel i kjøretøy utgjør den største gevinsten.

Behandling av matavfall ved Den Magiske Fabrikken sammenliknet med energiutnyttelse sammen med restavfall eller kompostering er beregnet å gi en netto klimagevinst på henholdsvis 187 og 285 kg CO2-ekvivalenter/tonn matavfall. Dersom behandling av husdyrgjødsel ansees som en innsatsfaktor og inkluderes i systemgrensene for behandling av matavfall, bidrar dette med en ytterligere gevinst på 69 kg CO2-ekvivalenter/tonn matavfall.

Beregningene av produksjon og bruk av biogass som drivstoff er utført ved bruk av EPD-metodikk (Environmental Product Declaration). Dette medfører at systemet splittes opp og miljøbelastningene fordeles/allokeres mellom de ulike produktene (biogass og biogjødsel). Utnyttelse av ressursene ved å produsere mange biprodukter gir en fordel ved at miljøbelastningene til fellesprosessene fordeles på flere produkter, noe som resulterer i at belastningen per produkt blir redusert. Resultatene fra Den Magiske Fabrikken viser at biogassen er et av de mest klimaeffektive drivstoffene på markedet, med 0,25 kg CO2-ekvivalenter/km busstransport.

De ulike beregningsmåtene som er gjennomført i rapporten viser at datakvaliteten, systemgrensene og den funksjonelle enheten bør tilpasses det som er hensikten med studien og hva slags type beslutning analysene skal gi innspill til. I noen sammenhenger er det viktig å få fram alle de positive og negative effektene fra den totale gjenvinningsverdikjeden som inkluderer flere funksjoner og produkter (f.eks. avfallstjeneste, produksjon av produkter, energibærere, CO2). Denne type analyser viser synergien man får ved å utnytte avfallsressurser til nye produkter, og bør benyttes for sammenligning av ulike avfallshåndteringsmetoder og behandlingsanlegg. I andre sammenhenger skal man presentere miljøfotavtrykk tilknyttet et spesifikt produkt. Da er det ofte fokus på å unngå dobbelttelling av miljøgevinstene fra gjenvinningssystemene, noe som kan skje dersom flere produkter «tar æren» for de samme miljøgevinstene. EPD-metodikk er en beregningsmetode for å unngå denne type dobbelttelling, og denne deklarasjonen viser dermed «kun» et utsnitt av miljøeffektene fra det totale gjevinningssystemet som produktet er en del av (fordelt på de ulike produktene). Det kan derfor være behov for å presentere det «totale bildet» som tilleggsinformasjon til en EPD for produkter fra gjenvinningssystemer.

Til slutt er det viktig å påpeke at aktørene i verdikjeden ikke bør bruke resultater fra analyser av generiske eller gjennomsnittlige produktsystemer til å sammenlikne seg med spesifikke konkurrenter. Dersom det skal gjøres en reell sammenlikning, er det nødvendig å gjennomføre likeverdige analyser med samme datakvalitet for de produktene eller tjenestene som skal vurderes.

2020

This report summaries three different activities performed during the SirkuærPlast project. Life cycle costing (LCC) in SirkulærPlast
This section outlines the application of life cycle costing (LCC) principles. A general background to LCC is followed by a summary of how LCC is applicable in the SirkulærPlast context, followed by a summary of the outcomes within the project. Potential broader effects of the project, Scaling
The project as a whole has realised a reduction in demand for virgin plastic for some product applications. This part of the report assesses the potential effects of the project were the outcomes applied at a broader regional or national scale. If the gains achieved in the SirkulærPlast project were
applied to all plastic product producers in Norway, then this could achieve a 3-5% reduction in plastic use nationwide.


A 3% nationwide reduction corresponds to around 10 000 tonnes of plastic and hence 30 000 tonnes CO2-equivalents, also 800 TJ of energy. Norway’s total CO2 emissions for all activities are around 50 million tonnes per annum and the total energy consumption is around 328 TWh or 1.2×1018 J.
This means that the project outcomes afford the possibility of reducing Norwegian national CO2 emissions by around 0.6% and total energy consumption by around 0.07%.


REACH Assessment
In order to be able to assess the toxic effects in an LCA perspective, the input data needs to include information about the raw materials and chemical compositions of the relevant additives. This was not possible to obtain due to confidentiality and competition aspects associated with additives for plastics, as well as reluctance to disclose potential environmental hazards, which limits access to this kind of information. However, under REACH all additive suppliers are required to provide a safety data sheet that provides the users with information about potential hazards and remediation measures. These datasheets were used to obtain information about hazard labelling (relevant for REACH) and safety
precautions advised for each of the additives assessed.