Publikasjoner

2022

This report, A perspective on the state of the biogas industry from selected member countries, contains a compilation of summaries of country reports from member countries of IEA Bioenergy Task 37 (Energy from Biogas).

Each country report summary includes information on the number of biogas plants in operation, biogas production data, how the biogas is utilised, the number of biogas upgrading plants, the number of

vehicles using biomethane as fuel, the number of biomethane filling stations, details of financial support schemes in each country and some information on national biogas projects and production facilities. The publication is a regular update and is valid for information collected in 2020-2021. Reference year for production and utilisation is 2020, unless stated otherwise.

The chapter about Norway is written by senior researcher Kari-Anne Lyng at NORSUS.

2022

Borregaard is a world leading biorefinery that produces biochemicals from Norway spruce (Picea abies). With increasing attention towards sustainable production and reduction of greenhouse gases, they experience increased interest in how emissions of greenhouse gases, and biogenic CO2 in particular, of a product are calculated and how potential greenhouse gas savings can be communicated. NORSUS has therefore been commissioned by Borregaard to summarize different standards and frameworks that are relevant for Borregaard’s reporting and communication of environmental information. Focus has been on CO2, with a special emphasis on biogenic CO2.

This report is a modified version of report OR.21.21 (Soldal and Modahl, 2021). In the current version,
confidential information from Borregaard has been removed.

2022

This study was commissioned by Plastretur (Green dot Norway) and was carried out by NORSUS. The overarching goal has been to quantify the environmental impacts of Plastretur’s system for collection and material recycling of plastic packaging waste from households in Norway, and to identify factors which have large impacts on the results.

Life cycle assessment (LCA) methodology was applied to calculate the environmental impacts of collection and treatment of plastic waste resources, as well as the avoided emissions when recycled material substitute virgin material, and when energy from waste substitute other energy carriers. The current system of sorting and recycling plastic waste was compared with an alternative with no sorting, where plastic waste goes to incineration with energy recovery together with residual waste. The assessment is made for the treatment of the amount of plastic waste sorted from Norwegian households during a year.

The plastic collection of household plastic waste in Norway consists of three systems, and each system is analysed and summarised to quantify the annual environmental impacts:

  • sorted at source versus incineration
  • sorting at ROAF sorting facility versus incineration and
  • sorting at IVAR sorting facility versus incineration

Note that the results for the three systems are not comparable since different functional units (representing different plastic compositions and quality) have been used for each system.

Specific data were collected, e.g. from Plastretur, ROAF and IVAR, to represent these systems to the extent possible. When specific data were unavailable, generic data were utilized. Four environmental impacts were assessed, including climate change, freshwater eutrophication, fossil resource scarcity and fine particulate matter formation.

The results from the study show that the Norwegian system for sorting and material recycling of plastic waste contributes to a reduction in greenhouse gas emissions of approximately 72 300 tonnes CO2 equivalents compared to the alternative with no sorting where all plastic is incinerated instead. The system for sorting in households contributes to a reduction of approximately 51 000 tonnes CO2 equivalents, and the sorting facilities of ROAF and IVAR contribute to a reduction of approximately    10 500 and 10 800 tonnes CO2 equivalents, respectively, compared to incineration. In municipalities with sorting in households, each kg sorted contributes on average to an emission reduction at 2.0 kg CO2 equivalents compared to the same amount being incinerated.

The results from this study show that sorting and recycling of household plastic waste is preferable to incineration with energy recovery in terms of climate change and fossil resource depletion. In terms of fine particulate matter formation and freshwater eutrophication, on the other hand, incineration with energy recovery gives lower impacts. For fine particulate matter formation, this is a result of higher avoided impacts from incineration compared to avoided impacts from recycling and incineration of plastics in the systems for sorting and recycling of plastics. For freshwater eutrophication, this is due to impacts from the resources needed for recycling processes, such as electricity, while incineration avoids contributions to freshwater eutrophication when substituting Norwegian district heat generation.

Critical factors affecting the results include:

  • Sorting rates for each plastic type
  • The quality of the plastic and what it substitutes
  • The market for recycled plastics

Transport and energy use have low impacts on the results.

In the future, Plastretur is advised to collect more specific data from the sorting- and recycling facilities, which to various extent had to be modelled using generic data. More information on recycling rates per plastic type, the quality and market of recycled materials and what type of material that is substituted by these recycled materials would be beneficial. Furthermore, Plastretur is advised to select sorting- and recycling facilities that produce high quality recycled material that in turn can substitute virgin plastics.

This project has not included a comparative assessment of the different sorting systems (sorting at source compared with residual waste sorting facilities). In such a study the comparison must be done based on the amount of plastic waste generated in the households. As more data is available for the different systems, it is recommended to set up analyses with the aim of a direct comparison of the different systems to better understand the implications of choosing one system over the other. In such a study, it would be interesting to address under what circumstances that one of these systems becomes preferable to the other. This could be done by, for example, assessing how well consumers need to sort the household plastic waste for the sorted at source system to be environmentally preferable over a sorting facility system where plastics are disposed with the residual waste.

2022

Denne rapporten er en del av prosjektet Bærekraftig Innovasjon gjennom Industriell symbiose på Øraområdet i Fredrikstad, og viser kartlegging av energi-, vann- og avfallsressurser fra bedrifter/virksomheter på området for året 2018.
Industriell symbiose går ut på at virksomheter innenfor et gitt geografisk område samarbeider om å utnytte ressurser som energi, vann og materialer på tvers av bedriftene så effektivt som mulig. Dette kan for eksempel gjøres ved at avfallsresurser fra en virksomhet utgjør et råstoff for nabobedriften.

Målet med arbeidet har vært å identifisere og kvantifisere energi-, vann- og materialressurser inn til og ut fra bedrifter i Øra-området for å få et bilde på intern sirkularitet på Øra og hvordan Øra bidrar til sirkularitet utenfor området. Dette danner grunnlag til å få oversikt over relevante strømmer som er aktuelle for videreutvikling innenfor industriell symbiose på Øra, samt hvordan Øra-området i seg selv bidrar til sirkularitet i samfunnet.

Rapporten presenterer energi-, vann- og avfallsstrømmer inn og ut av Øra-området i 2018, som grunnlag for å vurdere potensialet for økt ressursutveksling mellom bedrifter. Bedriftene på Øra ble kategorisert i to hovedtyper ut fra om virksomheten hovedsakelig omfatter behandling og gjenvinning av avfallsressurser (gjenvinningsbedrifter) eller om de tilhører mer typisk prosessindustri eller vareproduserende industri (produksjonsbedrifter). Det ble utviklet et spørreskjema til bedriftene i Excel, med formål om å kartlegge inngående og utgående ressursstrømmer, samt ressursutvekslingen mellom bedriftene. Spørreskjemaet ble sendt til bedriftene i juli 2020, og deretter revidert flere ganger parallelt med datainnsamlingen.

Totalt energibruk på Øra-området i 2018 var ca 700 GWh, fordelt på energikildene/-bærerne naturgass (ca 260 GWh), damp fra avfallsforbrenning (220 GWh), elektrisitet (185 GWh) og olje (30 GWh). produksjonsbedriftene står for det klart største energibehovet, sammenlignet med gjenvinningsbedriftene, og dampproduksjonen fra avfallsressursene bidrar med en vesentlig andel (220 GWh) av energibehovet til disse. Energiressursene ut fra Øra består i stor grad av spillvarme fra vannstrømmer, som utgjør ca 224 GWh tapt energi. I tillegg leveres energiressurser ut fra Øra i form fjernvarme/fjernkjøling (72 GWh), elektrisitet (8 GWh) og biogass til transport (18 GWh).


De største avfallsressursene inn til gjenvinningsbedriftene utgjøres av metaller (280 000 tonn) og kasserte kjøretøy (71 000 tonn). Dette, sammen med andre avfallsressurser som batterier og glass bidrar til at de samme bedriftene sender ut ca 295 000 tonn resirkulert materiale som går inn i sirkulære verdikjeder utenfor Øra. Det går også en intern sirkulær ressursstrøm på ca 5000 tonn metaller fra gjenvinningsbedriftene til produksjonsbedriftene. Avfallsstrømmene metall, kasserte kjøretøy, restavfall og batterier leveres til gjenvinning på Øra og utgjør henholdsvis 34%, 32%, 6% og 82% av totale mengden av tilsvarende avfallstyper generert i Norge. Dette viser at Øra utgjør et nasjonalt sirkulært senter for denne type avfall.
Totalt vannforbruk på Øra var ca 2,7 mill m3 med drikkevannskvalitet (levert fra FREVAR), og ca 13 mill m3 såkalt Glomma-vann. Vannstrømmene går hovedsakelig til produksjonsbedrifter som Kronos Titan, Adesso, Unger og Reichhold, for deretter å slippes ut igjen i Glomma eller som avløpsvann til FREVAR. Vannressursene utgjør per i dag et vesentlig mer lineært system enn tilsvarende systemer for energi og avfallsressurser.

2022

Metall og kartong er vanlige emballasjematerialer for matprodukter i Norge, og brukes blant annet til å emballere hermetiserte hakkede tomater. Flere distributører har de siste årene gått over fra å bruke metall[1]til kartongemballasje, men kunnskapsgrunnlaget om miljøpåvirkningen og sirkulariteten til en slik endring har så langt vært begrenset, spesielt under norske forhold. Flere aspekter kan ha stor innvirkning på miljøpåvirkningen til emballasjeløsningene, slik som metodiske valg knyttet til modellering av gjenvinning, type data som benyttes og definisjon av systemgrenser. Nasjonale forutsetninger slik som andel gjenvunnet materiale i produktet, innsamlingsgrader og avfallshåndteringsmåter påvirker også miljøbelastningen betydelig.

Denne studien ble gjennomført på oppdrag for Norsk Metallgjenvinning. Målet med prosjektet har vært å øke kunnskapen om de miljømessige styrkene og svakhetene til metallemballasje sammenliknet med kartongemballasje i et livsløpsperspektiv under norske forhold. Dette ble gjort ved å samle inn spesifikke data for innsamling og gjenvinning av emballasjeløsningene, og ved å benytte ulike metoder for modellering av gjenvinning i LCA, i tillegg til å vurdere sirkulariteten til produktene.

Livsløpsanalyser (LCA), som er en standardisert metode for å kvantifisere miljøpåvirkningene til et produkt eller en tjeneste gjennom hele livsløpet, ble brukt for å vurdere miljøpåvirkningen. Material Circularity Indicator (MCI), introdusert av EllenMcArthur Foundation, ble brukt for å vurdere sirkularitet på produktnivå. Tre ulike metoder for modellering av gjenvinning ble testet: cut off-metoden, end-of-life net scrap-metoden og den nyutviklede Circular Footprint Formula (CFF) som er en del av Product Environmental Footprint (PEF)- metoden. I tillegg ble det definert to forbedringsscenarier for metallemballasjen: økt andel gjenvunnet materiale og endring av produksjonssted.

Resultatene viser at kartongemballasje generelt har lavere miljøpåvirkning enn metallemballasje i et livsløpsperspektiv. Dette gjelder for alle miljøpåvirkningskategoriene som er inkludert i studien, med unntak av arealbruk og marin eutrofiering. Ved bruk av material circularity Indicator viser resultatene at metallemballasjen har bedre produktsirkularitet enn kartongemballasjen. En høy verdi for sirkularitet er positivt, siden det indikerer et mer sirkulært system i henhold til MCI, der produkter kan ha en verdi mellom 0 og 1, der 1 indikerer et fullstendig sirkulært produkt. Metallemballasjens høye sirkularitetstall skyldes blant annet et høyere resirkulert innhold enn kartongemballasjen.

Resultatene er avhengig av forutsetningene som inngår i studien, og det er verdt å merke seg at generiske data ble brukt for å modellere produksjonen av emballasjeløsningene på grunn av mangel på tilgang til spesifikke data. For å redusere miljøbelastningen til metallemballasje anbefales det å øke andelen gjenvunnet materiale. Siden metallproduksjon er relativ energiintensivt, har type energibærer i produksjonsfasen stor innvirkning på metallemballasjens klimapåvirkning. Bruk av fornybare energibærere kan derfor bidra til å redusere klimapåvirkning betydelig. Transporten fra butikk til forbruker og avfallshåndtering av distribusjonsemballasjen har også en betydelig klimapåvirkning. Denne studien viser motstridende resultater når man ser på sirkularitet og miljøpåvirkninger av matemballasje. Metallemballasjen har bedre sirkularitet på produktnivå, mens kartongemballasjen har generelt sett lavere miljøpåvirkninger. Dette viser kompleksiteten i denne typen analyser og viktigheten av å inkludere både sirkularitet og miljøpåvirkninger i studier av denne typen.

2021

Østre Toten kommune ønsket å gjennomføre et prosjekt for å sette fokus på matsvinn og klimavennlig mat i omsorgssektoren. Da prosjektet startet i november 2019 hadde kommunen på det nærmeste ferdigstilt et nytt sykehjem som skulle erstatte to av de eksisterende institusjonene. Det nye sykehjemmet, Labo helse og omsorgssenter, fikk medarbeidere fra fire tidligere kjøkken og tre ulike institusjoner. En annen institusjon, Fjellvoll, ble omgjort til omsorgsboliger med bemanning.


Østre Toten kommune ønsket å implementere felles metoder og rutiner, kompetanseheving og etablering av en felles kultur ved det nye kjøkkenet. Hovedmålet for prosjektet var å redusere klimagassutslipp gjennom å redusere matsvinnet med 20% i løpet av prosjektperioden og innføre mer klimavennlige menyer. Prosjektet er finansiert av Miljødirektoratets klimasatsmidler og Østre Toten kommune.


Prosjektet ble delt inn i 4 faser:
• Situasjonsanalyse med gjennomføring av måling av matsvinn, gjennomføring av intervjuer med relevante ansatte for å kartlegge muligheter og utfordringer for å redusere matsvinn og innføre mer klimavennlige menyer, og sammenstilling av resultatene
• Planlegging og prioritering av tiltak hvor det ble gjennomført en workshop med de ansatte på avdelingene for å identifisere og prioritere tiltak
• Gjennomføring med innføring av nye rutiner for å redusere matsvinn, kompetanseheving innenfor klimavennlig mat for ansatte på kjøkkenet og utarbeidelse av målgruppetilpasset informasjonsmateriell
• Evaluering hvor det i forkant ble gjennomført en ny periode med måling av matsvinn, og gjennomføring av workshoper for ansatte på kjøkkenet og på avdelingene, lederne og en felles workshop for alle hvor målet var å prioritere tiltakene som skulle videreføres.


Å redusere matsvinnet i omsorgssektoren der det serveres mat vil, i tillegg til reduserte klimagassutslipp, bidra til reduserte innkjøpskostnader, bearbeidingskostnader og lønnskostnader. I tillegg kan svinnreduserende tiltak bidra til bedre holdninger hos ansatte slik at den enkelte får større bevissthet om matsvinn og endrer atferd privat. Svinnreduserende tiltak kan også bidra til bedre utnyttelse av råvarer og utvikling av nye retter med bruk av restemat.

2021

Som del av forskertiden sin har Ellen-Marie Forsberg nå ferdigstilt artikkelen Involving older adults in technology research and development discussions through dialogue cafés sammen med kolleger fra hennes tidligere jobb på OsloMet. Artikkelen viser nytten av å involvere eldre i diskusjoner om bruk av smarthus-teknologi og kunstig intelligens for løsninger som kan hjelpe eldre å bo hjemme lenger.

2021

This report is developed by the IEA Bioenergy Task 37 Energy from biogas. The report provides an insight in a broad range of aspects associated with using biomethane as a fuel for transport, and describes the multifunctionality of biomethane solutions:

• Biomethane has a competitive performance compared with fossil fuels and other biofuels on a whole life cycle analysis and is particularly suited to long distance heavy vehicles.

• Biomethane from manure, residues, waste & catch crops is estimated to have low GHG emissions as compared to other renewable fuels.

• Biomethane may contribute to reduced air pollution in comparison with diesel, petrol, and other biofuels.

• Biomethane can contribute to a substantial reduction in acidification compared with fossil fuels.

• Biomethane may contribute to significantly reduced noise levels in comparison with diesel heavy goods vehicles.

• Well-designed and applied biogas systems may be essential to transform conventional farming to more sustainable farming and to organic farming.

• Common types of biogas solutions provide essential sociotechnical systems services as components of systems for waste and (waste) water management.

• Biogas solutions may importantly contribute to improved energy supply/security and flexibility.

The report provides exemplars of very good biomethane based transport solutions, with a high technological readiness level for all elements of the chain from production to vehicles. Transport biomethane sits well in the broad circular economy, energy, and environmental system providing services across a range of sectors including reduction in fugitive methane emissions from slurries, treatment of residues, environmental protection, provision of biofertiliser, provision of food grade CO2 and a fuel readily available for long distance heavy haulage. What we do not have is time to postpone the sustainable implementation of such circular economy biomethane systems as the climate emergency will not wait for absolutely perfect zero emission solutions; should they exist.

2021

Denne rapporten beskriver resultatene av en miljøvurdering av ølservering med bruk av ulike typer ølglass på festivaler. Prosjektet er gjennomført av NORSUS på oppdrag fra Øyafestivalen. Prosjektet er finansiert av Handelens Miljøfond.

Hovedmålet med prosjektet har vært å bidra til økt kunnskap om miljøpåvirkningen til ulike løsninger for drikkeservering, og dermed bidra til redusert potensiell klimapåvirkning og redusert plastforsøpling ved festivaler og arrangementer.
De fire alternativene som har blitt analysert er:
1a Gjenvinnbare engangsglass av polypropylen (PP)
1b Gjenvinnbare engangsglass av polyethylentereftalat (PET)
2 Komposterbare engangsglass av polylaktat (PLA)
3 Gjenbruksglass av PP

De to miljøpåvirkningskategoriene som er vurdert er potensiell klimapåvirkning og risiko for forsøpling. Risiko for forsøpling er vurdert ved hjelp av massebalanse og en kvalitativ vurdering, mens potensiell klimapåvirkning er vurdert ved hjelp av livsløpsanalyser (life cycle assessment – LCA). Den funksjonelle enheten i analysen er definert som servering av 1000 halvlitere med øl. I livsløpsanalysene er det benyttet to ulike metoder for modellering av gjenvinning: cut-off og systemutvidelse. Begge metodene er definert som gyldige måter å modellere gjenvinning på, og har ulik fremgangsmåte for å fordele byrder og gevinster knyttet til resirkulering mellom første og andre produktsystem. Ved bruk av cut-off favoriseres bruk av resirkulert materiale i produktet som analyseres, mens bruk av systemutvidelse favoriserer gjenvinning av produktet etter bruk. Det finnes også andre modelleringsmåter for gjenvinning, slik som Europakommisjonens Circular Footprint Formula (CFF) i Product Environmental Footprint (PEF)-systemet. De to valgte modelleringsmåtene i denne rapporten representerer to ytterpunkter og bruk av disse bidrar derfor til å teste robustheten til resultatene.

Analysene er gjennomført for to ulike kategorier av festivaler: festivaler med innsamlingssystem og festivaler med innsamlingssystem med ekstra oppsamling. Ekstra oppsamling er frivillige som plukker søppel og kildesorterer avfallet og dermed bidrar til å redusere svinn. Returgrader og svinn i analysen er basert på erfaringstall fra Øyafestivalen med de gitte pante- og gebyrsatser som har vært brukt frem til nå. Det er ikke vurdert hvordan en eventuell endring i pante- eller gebyrsatser vil påvirke resultatene.
Resultatene av analysene viser at følgende tre faktorer er viktige for klimapåvirkning fra ølglassene:
• Hvor mye ny plast må produseres per servering?
• Hvor mye plast sendes til forbrenning?
• Hvor mye gjenvinnes og kan erstatte jomfruelig råvareuttak?
Med andre ord har returgrad og svinn stor påvirkning på resultatene. Disse to faktorene har også betydning for risiko for forsøpling for de ulike alternativene. De kvalitative vurderingene viser at valg av innsamlingssystem på festivalen kan antas å ha større betydning på risikoen for forsøpling enn valg av ølglassalternativ. På bakgrunn av dette anbefales det at festivaler som ønsker å redusere sin miljøbelastning etablerer gode systemer for innsamling av ølglass og kvantifiserer svinn og returgrad, uavhengig av hvilken ølglassløsning de velger. Bransjen som helhet oppfordres til å kvantifisere og følge utviklingen av svinn og returgrad over tid, og å sørge for erfaringsutveksling angående hvilke tiltak som er mest effektive for å redusere svinnet.

Festivaler som i dag har et engangssystem kan oppnå en betydelig klimagevinst ved å innføre et innsamlingssystem og sende glassene til materialgjenvinning, for eksempel gjennom en panteordning.
For festivaler med ekstra oppsamling er svinnprosenten betydelig lavere enn for de som ikke har det. Dette viser at innsatsen til frivillige har en betydelig miljønytte.
For festivaler med ekstra oppsamling gir gjenbruksglass av PP og engangsglass av PET med minimum 80% resirkulert materiale best resultat.

For festivaler uten ekstra oppsamling gir engangsglass av PP og engangsglass av PET med minimum 50% resirkulert materiale best resultat.

Høy innsamlings- og oppsamlingsgrad er enda viktigere for klimapåvirkningen for gjenbruksglass, som er tykkere og dermed består av mer plast, enn for engangsglass. Sensitivitetsanalysene viste at svinnet for gjenbruksløsningen må være under 15% for at den skal være bedre enn engangsglass PP med gjenvinningssystem. Årsaken til dette er at samme svinnprosent av ølglass i de to systemene gir større tap av plast for gjenbruksglass, noe som medfører både høyere forbrenningsutslipp og behov for mer plast inn i systemet sammenlignet med engangsglass.
Formålet med denne rapporten har vært å belyse miljøperspektivet knyttet til løsninger for drikkeservering på festivaler. Når det skal tas en beslutning om hvilken ølglassløsning som skal velges, vil det være nødvendig å se resultatene i sammenheng med andre aspekter, slik som økonomi og praktiske forhold.

2021

This report is a deliverable for the Dsolve Centre for Research-based Innovation (CRI), Work Area 5 Circularity of bio-based, biodegradable, and non-degradable plastics. More specifically, this report documents Tasks 5.1.1 and 5.3.2.
The existing mass flow research concerning the fate of plastics in fishing gear used in the Norwegian commercial fishing and aquaculture industry is summarised in this report. Loss of fishing gear and aquaculture equipment can lead to ghost fishing and emission of microplastics affecting life below water.

Plastic flows in commercial fishing gear and aquaculture can be categorized in four groups: a) new fishing gear, b) repaired materials, c) collected gear delivered to waste treatment, and d) lost equipmentseparated into loss from wear and tear, documented loss, and undocumented loss. Figure 1 gives an overview of the quantified and unquantified flows of plastics in the commercial fishing and aquaculture industry.

2021

Biodiversity together with global warming and impacts caused by emissions of nitrogen compoundswas back in 2009 identified as the most important areas of concern for the sustainable future of humankind (Rockström et al., 2009). Now, the decline of biodiversity in the world is high on the political agenda as our livelihoods and well-being all depend on healthy ecosystems and recent studies report that global biodiversity is declining at rates unprecedented in human history (Dasgupta, 2021; IPBES, 2019). Thus, when assessing environmental impact of products and systems, including biodiversity impacts are of high importance.


Research to develop a suitable method to include biodiversity in life cycle assessment (LCA) has been and is on-going. However, the current Product Environmental Footprint (PEF) methods do not include an impact category named «biodiversity”. However an assessment of the relevance of biodiversity when developing a PEFCR shall be made and if biodiversity is relevant, then a description shall be included of how this biodiversity impact shall be assessed (European Comission, 2018). Suggestions are to use a certification scheme as proxy or to state how much of the materials in the study that comes from ecosystems where biodiversity is maintained and/or are increased, and to set a level of how much the biodiversity can be affected, e.g. 15% loss of species richness due to disturbance. It would be beneficial for the comparability of PEF studies if one method were used for biodiversity instead of having the option to choose method. There are working groups set up by the European commission that is currently reviewing biodiversity methods with the aim to recommend an approach to be included in the PEF guidelines.


The report is prepared by the NordPEF group and briefly reviews the ongoing work on biodiversity methods for inclusion in LCA and include case studies from the Nordic countries using some of these methods. The benefits and drawbacks with the methods and suggest improvements from a Nordic perspective is also included, however not on detailed methodological level. The NordPEF group works on issues regarding the implementation of Product Environmental Footprint (PEF) in agricultural sector in the Nordics. The group consist of Anna Woodhouse, RISE (Sweden); Sanna Hietala, LUKE (Finland); Troels Kristensen, Aarhus University (Denmark) and Hanne Møller, NORSUS
(Norway). The work is funded by the Nordic Council of Ministries and national ministries (MMM/FI) and environmental protection agencies (EPA/SWE) via the Nordic Environmental Footprint (NEF) group. This report is not exhaustive within this topic and descriptions are based on experiences that the participants of the group have as LCA practitioners.

2021

There is an increasing interest in reusable bottles as an alternative to single-use packaging from the perspective of assumed reduced littering, waste generation and environmental impacts. In the assessment of a possible shift from single use to reusable bottles, it is important to apply a systems perspective to avoid potential trade-offs between various impacts. Life cycle assessment (LCA) is commonly applied to assess the life cycle impacts of products, typically including the processes of raw material extraction, production, use phase as well as waste management of the products assessed. The goal of this study is to review LCAs of reuse systems for bottles as well as the current European practice in such reuse systems. A recent review of LCAs of reuse systems was applied as the point of departure and complemented by recently published LCA studies. The focus of the review was on methodological aspects and on empirical data for trip rates, i.e., the number of times that the bottle is used during its lifetime. In total, nine LCAs of reuse systems and four European reuse system actors were included in the review as well as some additional highly relevant reports on trip rates.

Several aspects were highlighted as important in the reviewed LCAs of reuse systems. These include the size and composition of beverage packaging, trip rate, transportation distance between retailers and manufacturers, as well as the modelling of end of life of packaging materials, including collection rates. It is important that all these aspects are considered, that the data applied for the compared systems are selected, and that the interpretation of the study results are made, in line with the study goal, which can be to e.g. to compare current or potential future reuse and recycling systems. For example, the collection rate of the packaging in the systems assessed, in turn affected by the type of collection system in place, is one important and sensitive parameter both for single-use and reusable beverage packaging. The reason for this is that the collection rate affects the recycling rate, trip rate and littering rate in the respective single-use and reuse systems. However, detailed discussions on various collection systems, their varying collection rates, or potentials for improving these systems are rarely provided in the reviewed studies. When different collection systems are applied for the compared reuse and single-use bottle systems (e.g. a deposit for reusable bottlesand a voluntary system for single-use bottles), different collection rates will typically occur. A direct comparison of the environmental impact for such systems might therefore be misleading unless the difference in collection rates between the systems are described and in line with the study goal. If the goal of a study is to compare potential future bottle systems, the collection systems applied should be carefully selected to ensure a comparison focusing on differences between the bottle systems (e.g. single-use bottles which are collected for material recycling and converted to raw material for new bottles, or reusable bottles which are collected for refilling), rather than on differences reflecting the underlying collection systems. This is especially important when there are no clear arguments for why the selected collection systems should be different for the bottle systems assessed. However, if the goal is to compare the impact of existing bottle systems, the collection systems applied for the respective bottle systems should be used. Nevertheless, important aspects, such as the collection systems applied for the compared systems, their related collection rates as well as their impact on the results should be acknowledged.


Other important aspects such as social and economic ones were also identified in the reviewed studies. Littering, which commonly is highlighted as an issue related to single-use plastic products, were only assessed in one of the reviewed studies. This literature review is non-exhaustive but provides an overview of recently published LCAs of reuse systems for bottles. The results from this study can provide recommendations to LCA practitioners in conducting future LCAs of reuse systems for bottles to be compared to single-used bottles, as well as to beverage packaging actors, such as reuse system actors.

2021

Det finnes flere tidligere studier på engangsplastposter og deres alternativer ved dagligvarehandel. Behovet for en studie av norske forhold oppstod ettersom handleposene som brukes i Norge anses av industrien som av høy kvalitet og de har flere mulige bruksområder (de brukes som avfallsposer av norske forbrukere). Det at de alternative løsningene med flere bruksområder har kommet dårlig ut i andre skandinaviske studier motiverte NORSUS til å ville gjennomføre en slik studie for norske forhold. De involverte aktørene hadde ulike meninger om hvordan utfallet ville bli, men de satt med samme interesse for å gjennomføre en robust studie. Denne studien vil bli offentliggjort og brukt til å informere norske forbrukere, og derfor har et kritisk gjennomgangspanel vært involvert i hele studien.

2021

Denne rapporten er en del av prosjektet Mulighetsstudie CCS-klynga på Øra og regionalt, støttet av CLIMIT.
Utslipp av klimagasser fra menneskelig aktivitet er en av de viktigste miljøutfordringene i dette århundret. Den største kilden til klimagassutslipp er karbondioksid, en klimagass som har økt dramatisk de siste tiår, hovedsaklig som følge av bruk av fossil energi til energi og transport. CCS (carbon capture and storage/karbonfangst og lagring) er en måte å redusere klimagassutslipp på ved å fange og permanent lagre karbondioksid (CO2). CCU (carbon capture and utilization/karbonfangst og bruk) er en måte å resirkulere karbonet i fanget CO2 på ved å konvertere det til brensel eller andre produkter. Forkortelsen CCUS beskriver systemer som inkluderer både bruk og lagring av fanget CO2.
Denne studien har analysert verdikjeder med både CCS (carbon capture and storage) og CCU (carbon capture and utilization), og sammenlignet dem med deres respektive referansescenarier. Studien har benyttet metodikk for livsløpsvurderinger (LCA) i henhold til ISO-standardene 14044/48 og spesifikke retningslinjer for LCA av CCU-verdikjeder. Analysene er gjennomført for to industrielle aktører; anlegget for papirproduksjon ved Norske Skog Saugbrugs og energigjenvinningsanlegget Sarpsborg Avfallsenergi (SAE).

2021

Waste 2 Power (W2P) – høyverdig energigjenvinning av plastavfall» (High quality energy recovery from plastic waste) is a pre-project (forprosjekt) in the regional development program FORREGION funded by the Research Council of Norway and administrated by Viken county council. The project begun with a collaboration between Vaia Miljø AS and NORSUS.

The project aims to understand the potential for commercializing a Waste to Energy prototype or Waste2Power (W2P) acquired by Vaia Miljø from Italy for energy recovery of waste and establish cooperation with relevant R&D actors. The project includes four main tasks covering the techno-economic analysis of the W2P technology (task 1), the development of an industrial plan based on the availability of plastic waste (task 2), a simplified environmental analysis by Life Cycle Assessment methodology (task 3), and the development of a plan for further research activities (task 4)”

2021

Produksjon av biogass fra husdyrgjødsel er et godt eksempel på et bærekraftig bioenergisystem: Det gir en sirkulær økonomi i form av lokal produksjon av organisk biogjødsel, samtidig som biogass kan brukes til å produsere varme, elektrisitet eller drivstoff. I tillegg bidrar det til å redusere lukt og metanutslipp fra lagring av husdyrgjødsel, og kan minimere avrenning som kan forårsake vannforurensning. Så hva skyldes det at husdyrgjødselressurser i liten grad brukes til biogassproduksjon? Egenskapene til gjødsel avhenger blant annet av husdyrtypen og gårdsdriften, noe som gir stor variasjon i  egenskapene til tilgjengelige gjødselressurser og kostnadene knyttet til å produsere biogass produsert fra husdyrgjødsel. For å illustrere dette har IEA Bioenergy publisert denne rapporten som undersøker potensialet for utnyttelse av husdyrgjødsel i biogassanlegg i syv land: Tyskland, Australia, Østerrike, Norge, Canada, Irland og Storbritannia. Disse landene har store variasjoner i type og omfang av biogassindustri, landbrukspraksis og klimatiske forhold. Håpet er at dette spekteret kan bidra til økt kunnskap  om biogassproduksjon fra husdyrgjødsel som kan være relevant for mange land globalt.

2021

Matsvinnet fra matbransjen, offentlig sektor og husholdningene utgjorde 400 000 tonn i 2020.

Dette kan omregnes til:

  • 75 kg matsvinn per innbygger og år.
  • 1,1 millioner kg spiselig mat i søpla hver dag.

Og tilsvarer:

  • Et årlig klimaavtrykk på ca. 1,3 millioner tonn CO2-ekv.
  • Et årlig økonomisk tap på over 20 milliarder.

Fordelingen av totalt matsvinn (tonn) i 2020 for de ulike verdikjedeleddene er vist i figuren under. Figuren viser også endringen i prosent fra 2015 til 2020 (målt i kg/innbygger).

Matsvinnet er redusert for samtlige av verdikjedeleddene, og totalt er matsvinnet:

  • Redusert med 9 % målt i kg per innbygger.
  • Redusert med 6 % målt i tonn.

Dette tilsvarer:

  • En reduksjon i klimaavtrykket på 8 %.
  • En reduksjon i det økonomiske tapet på 10 %.

Matsvinnet er mest redusert for relativt klimaintensive og dyre matvarer (kjøtt, ferdigmat og meierivarer), og minst for relativt billige og lite klimaintensive matvarer (brød, bakervarer, frukt og grønnsaker).

2021

This report documents the modelling and environmental results for 8 products from Borregaard in Sarpsborg. The work has been performed from March 2020 to June 2021, and it is directly based on the work done in phase I/II in 2008, the 2010 update and the 2015 update. In this study life cycle assessment (LCA) methodology has been used.

For most indicators and products, the burdens have decreased compared with 2014. It is, however, difficult to draw conclusions regarding the lignosulfonates, as the LCA model has changed since the 2014 modelling. Steam, chemicals and direct emissions are the most important explanations for changed burdens for Borregaard’s products. Reduced direct emissions from the ethanol factory have contributed to reduced eutrophication burdens for several products.

The relative burdens of the life cycle phases are shown in Figure 1.

Figure 1    Relative results for the life cycle phases, from cradle to gate for four products from Borregaard, shown for the two indicators climate change and eutrophication. For the eutrophication indicator, the life cycle phase ‘Various’ is closely linked to direct emissions from Borregaard. Transport to customer is not included.

Burdens from production of liquid natural gas (LNG) and the use of LNG in the production process are important contributors to the climate change indicator for cellulose and ethanol. Production and transport of input chemicals are important for vanillin and hydrochloric acid, both with regards to climate change and eutrophication. Direct emissions at the Borregaard site are, however, the main contributor to eutrophication both for cellulose, ethanol, and vanillin.

Use of energy and chemicals, and direct emissions at the Borregaard site, are the most important contributors in the overall picture, and the share of renewable energy sources used for steam production affects all products.

  • More use of electricity on behalf of LNG can reduce the climate burdens for the whole product portfolio, and most of all for cellulose, ethanol and lignosulfonate liquid. 
  • More use of internally produced sodium hydroxide has the potential to affect the burdens of several Borregaard products, and especially cellulose and vanillin.
2021

Bergen kommune ønsket å gjennomføre et pilotprosjekt for å sette fokus på reduksjon av matsvinn ved to sykehjem. De to sykehjemmene var Fantoft og Lyngbøtunet.

Å redusere matsvinn er politisk forankret i Bergen kommune i Byrådets politiske plattform og vedtatte handlingsplan for mat, måltider og ernæringsarbeid i pleie- og omsorgstjenesten «Maten servert (2018-2023)».


Bergen kommune ønsket å kartlegge matsvinnet ved de to sykehjemmene Fantoft og Lyngbøtunet, implementere felles metoder og rutiner, kompetanseheving og etablering av en felles kultur for reduksjon av matsvinn. Kommunen ønsket bistand til oppstartsamling, sammenstilling av data etter to veierunder, en workshop for å identifisere og prioritere tiltak for å redusere matsvinn, og en felles workshop for å oppsummere resultatene. På begge sykehjemmene ble det frikjøpt en mindre stillingsprosent som fikk ansvaret for å pilotere prosjektet ved det enkelte sykehjem. Prosjektet er finansiert av Bergen kommune.

Prosjektet ble delt inn i 4 faser:
• Situasjonsanalyse med gjennomføring av måling av matsvinn, og sammenstilling av resultatene
• Planlegging og prioritering av tiltak hvor det ble gjennomført to separate workshoper med relevante ansatte på Fantoft og Lyngbøtunet for å identifisere og prioritere tiltak
• Gjennomføring med innføring av nye rutiner og tiltak for å redusere matsvinn og kompetanseheving
• Evaluering hvor det i forkant ble gjennomført en ny periode med måling av matsvinn, og gjennomføring av en felles workshop for ansatte på kjøkkenet og avdelingene ved de to sykehjemmene, Matvarehuset, og representanter fra Klimaetaten i Bergen kommune.


Å redusere matsvinnet i omsorgssektoren der det serveres mat vil, i tillegg til reduserte klimagassutslipp, bidra til reduserte innkjøpskostnader, bearbeidingskostnader og lønnskostnader. I tillegg kan svinnreduserende tiltak bidra til bedre holdninger hos ansatte slik at den enkelte får større bevissthet om matsvinn og endrer atferd privat. Svinnreduserende tiltak kan også bidra til bedre utnyttelse av råvarer og utvikling av nye retter med bruk av restemat.

2021

Denne rapporten er en del av forskningsprosjektet Bærekraftig biogass, som er finansiert gjennom Forskningsrådets EnergiX-program.

Opprinnelsesgarantiordningen for elektrisitet er en europeisk ordning som er videreført og styrket i det reviderte fornybardirektivet (2018/2001/EU, ofte referert til som RED II). Ordningen inngår som en del av det felles rammeverket i det indre energimarked i EØS-området. Den ble innført med EUs første fornybardirektiv i 2001 for å gi forbrukere et prinsipielt valg. En opprinnelsesgaranti er et bevis på hvilke kilder en gitt mengde strøm er produsert fra. Ordningen ble innført med EUs første fornybardirektiv (Direktiv 2001/77/EC) i 2001 og er videreført i de reviderte fornybardirektivene (Direktiv 2009/28/EC og 2018/2001/EU). I henhold til EUs Eldirektiv (Direktiv 2009/72/EC) skal alle kraftleverandører informere sine kunder om hvordan kraften de solgte foregående år ble produsert. Dette kalles en varedeklarasjon.

I det reviderte fornybardirektivet av 2018 (RED II, Artikkel 19) er ordningen for opprinnelsesgarantier utvidet til også å omfatte gass (inkludert hydrogen), i tillegg til elektrisitet og varme/kjøling.

Den viktigste forskjellen mellom et opprinnelsesgarantisystem for elektrisitet (som eksisterer i dag) og for biogass, er bærekraftskriteriene med tilhørende krav til massebalanse, som kreves for bioenergi dersom den skal kunne inkluderes i et lands måloppnåelse for fornybar energi.

Det pågår et arbeid med å revidere CEN-standarden EN 16325 Guarantees of Origin related to energy – Guarantees of Origin for Electricity til også å omfatte gass, hydrogen, samt kjøling/varme, som antas ferdigstilt i løpet av 2022. Vurderingen av opprettelsen av et system med opprinnelsesgarantier for biogass bør derfor avventes og sees i sammenheng med dette arbeidet. I ovennevnte standard er det foreløpig lagt til grunn at det er frivillig å rapportere på bærekraftskriteriene.

Uavhengig av om det vurderes å innføre et opprinnelsesgarantisystem for biogass, anbefales det derfor å starte arbeidet med å utvikle en nasjonal database/register for flytende og gassformig drivstoff (jfr. RED II/artikkel 28), som inkluderer rapportering av bærekraftskriteriene. Det anbefales at dette arbeidet sees i sammenheng med tilsvarende arbeid som skal settes i gang i Sverige (Energimyndigheten, 2019a), som også har en større andel av sitt biogassvolum offgrid (leveres ikke inn på fells gassnett). I tillegg bør arbeidet med utvikling og oppretting av et slikt register samkjøres med det systemet som Miljødirektoratet i dag har for alle som omsetter biodrivstoff og flytende biobrensel om rapportering oppfyllelse av bærekraftskriteriene, og med dagens rapportering fra norske biogassanlegg til Miljødirektoratet og SSB. Resultatene fra dette arbeidet vil danne et viktig grunnlag for en vurdering av en fremtidig kobling av et slikt registeret til et eventuelt opprinnelsesgarantisystem for biogass.