Denne klimagassrapporteringen har blitt beregnet i henhold til GHG Protocol Corporate Value Chain (Scope 3) Accounting and Reporting Standard for driftsåret 2022 og inkluderer operasjoner som er under Borregaards kontroll. Det vil si at aktivitet i Norge, Storbritannia, USA, Østerrike og Tyskland er inkludert i beregningene.
På oppdrag fra Elvia har NORSUS, Norsk institutt for bærekraftsforskning, utviklet en metodikk for og gjennomført en klimagassberegning av et regionalnett, og i tillegg utviklet et verktøy for etablering av klimagassbudsjetter for regionalnettsprosjekter. Målet med prosjektet var å etablere grunnlaget som gjør Elvia i stand til å kunne vedta beslutninger basert på klimagassutslipp fra sine utbyggingsprosjekter.
Bygging av en ny transformatorstasjon og regionalnett i Våler ble benyttet som pilotprosjekt. Gjennom datainnsamling fra Elvia, samt kunnskap og metode NORSUS har fra miljøvurdering av kraftnett, ble det utviklet en LCA-modell av Våler-prosjektet. Denne modellen inkludere hele livsløpet til kraftnettet – fra uttak av råmaterialer, produksjon av komponenter, transport, montering, drift med vedlikehold, utskiftninger, energibruk og nettap, tap av SF6, til livsløpets slutt med demontering og avfallshåndtering. På bakgrunn av dette ble de fossile klimagassutslippene for prosjektet beregnet.
NORSUS has examined the literature about PHA and considered the microplastics issues related to its use as a replacement for conventional plastics for mulch film, geotextiles, control-release fertilizer and dolly ropes. This report summarizes the findings based on the literature and a rough MFA performed for these products.
Denne rapporten er skrevet av NORSUS på oppdrag for Energigass Norge, Avfall Norge, Norges Bondelag, Biogass Oslofjord og Norsk Vann. Hensikten med arbeidet har vært å gi et bilde av mulighetsrommet for produksjon av biogass i Norge med tanke på aktuelle råstoff, teknologiutvikling og klimanytte.
Rapporten er delt inn i tre hoveddeler: teoretisk biogasspotensial fra nåværende og fremtidig råstoffbase med utgangspunkt i dagensteknologi, teoretisk biogasspotensial knyttet til mulig fremtidig teknologiutvikling og klimanytte knyttet til en høyere utnyttelse av biogasspotensialet enn i dag.
I denne rapporten er biogass definert som gasser av biogent opphav som inneholder metan. Energipotensialet fra metan betegnes dermed som biogasspotensial, uavhengig av produksjonsteknologi.
Videre er det lagt som en forutsetning at råstoff som skal brukes til biogassproduksjon er organiske avfallsog sidestrømmer. Energivekster er dermed ikke inklud
Denne rapporten er utarbeidet av Norsk institutt for bærekraftsforskning (NORSUS) på vegne av Matvett.
Matvett er mat- og serveringsbransjens selskap for å forebygge og redusere matsvinn og er ansvarlig for rapporteringen i henhold til bransjeavtalen om reduksjon av matsvinn på vegne av NHO Mat og Drikke, DLF, DMF, NHO Reiseliv og Virke som er deres eiere. Følgende verdikjedeledd er inkludert: Matindustri (eks. sjømatindustrien), grossist, dagligvarehandel, serveringsbransje i tillegg til kvalitativ kartlegging av holdning og adferd hos forbruker.
Denne rapporten er en del av prosjektet Bærekraftig Innovasjon gjennom Industriell symbiose på Øraområdet i Fredrikstad, og viser kartlegging av energi-, vann- og avfallsressurser fra bedrifter/virksomheter på området for året 2018.
Industriell symbiose går ut på at virksomheter innenfor et gitt geografisk område samarbeider om å utnytte ressurser som energi, vann og materialer på tvers av bedriftene så effektivt som mulig. Dette kan for eksempel gjøres ved at avfallsresurser fra en virksomhet utgjør et råstoff for nabobedriften.
Målet med arbeidet har vært å identifisere og kvantifisere energi-, vann- og materialressurser inn til og ut fra bedrifter i Øra-området for å få et bilde på intern sirkularitet på Øra og hvordan Øra bidrar til sirkularitet utenfor området. Dette danner grunnlag til å få oversikt over relevante strømmer som er aktuelle for videreutvikling innenfor industriell symbiose på Øra, samt hvordan Øra-området i seg selv bidrar til sirkularitet i samfunnet.
Rapporten presenterer energi-, vann- og avfallsstrømmer inn og ut av Øra-området i 2018, som grunnlag for å vurdere potensialet for økt ressursutveksling mellom bedrifter. Bedriftene på Øra ble kategorisert i to hovedtyper ut fra om virksomheten hovedsakelig omfatter behandling og gjenvinning av avfallsressurser (gjenvinningsbedrifter) eller om de tilhører mer typisk prosessindustri eller vareproduserende industri (produksjonsbedrifter). Det ble utviklet et spørreskjema til bedriftene i Excel, med formål om å kartlegge inngående og utgående ressursstrømmer, samt ressursutvekslingen mellom bedriftene. Spørreskjemaet ble sendt til bedriftene i juli 2020, og deretter revidert flere ganger parallelt med datainnsamlingen.
Totalt energibruk på Øra-området i 2018 var ca 700 GWh, fordelt på energikildene/-bærerne naturgass (ca 260 GWh), damp fra avfallsforbrenning (220 GWh), elektrisitet (185 GWh) og olje (30 GWh). produksjonsbedriftene står for det klart største energibehovet, sammenlignet med gjenvinningsbedriftene, og dampproduksjonen fra avfallsressursene bidrar med en vesentlig andel (220 GWh) av energibehovet til disse. Energiressursene ut fra Øra består i stor grad av spillvarme fra vannstrømmer, som utgjør ca 224 GWh tapt energi. I tillegg leveres energiressurser ut fra Øra i form fjernvarme/fjernkjøling (72 GWh), elektrisitet (8 GWh) og biogass til transport (18 GWh).
De største avfallsressursene inn til gjenvinningsbedriftene utgjøres av metaller (280 000 tonn) og kasserte kjøretøy (71 000 tonn). Dette, sammen med andre avfallsressurser som batterier og glass bidrar til at de samme bedriftene sender ut ca 295 000 tonn resirkulert materiale som går inn i sirkulære verdikjeder utenfor Øra. Det går også en intern sirkulær ressursstrøm på ca 5000 tonn metaller fra gjenvinningsbedriftene til produksjonsbedriftene. Avfallsstrømmene metall, kasserte kjøretøy, restavfall og batterier leveres til gjenvinning på Øra og utgjør henholdsvis 34%, 32%, 6% og 82% av totale mengden av tilsvarende avfallstyper generert i Norge. Dette viser at Øra utgjør et nasjonalt sirkulært senter for denne type avfall.
Totalt vannforbruk på Øra var ca 2,7 mill m3 med drikkevannskvalitet (levert fra FREVAR), og ca 13 mill m3 såkalt Glomma-vann. Vannstrømmene går hovedsakelig til produksjonsbedrifter som Kronos Titan, Adesso, Unger og Reichhold, for deretter å slippes ut igjen i Glomma eller som avløpsvann til FREVAR. Vannressursene utgjør per i dag et vesentlig mer lineært system enn tilsvarende systemer for energi og avfallsressurser.
Metal and carton packaging are both commonly used for the packaging of food in Norway, such as in the packaging of crushed tomatoes. Several food retailers have shifted from metal to carton food packaging, however, knowledge in terms of considering environmental impacts and aspects of to inform such a transition have so far been limited and especially for Norwegian conditions. Several aspects are important in influencing the environmental impact of metal and carton food packaging, including methodological choices for allocation in recycling, the type of data applied and the definition of the system boundaries. Country specific factors such as the recycled content in the product, collection rates and the applied waste treatment processes also influence the environmental impact results to a large extent.
This study was commissioned by Norsk Metallgjenvinning with the goal to increase knowledge about the environmental strengths and weaknesses of metal food packaging compared with carton food packaging in a life cycle perspective under Norwegian conditions. This was done by collecting specific data for collection and recycling of the food packaging options, and by applying various methods for modelling of recycling in LCA, in addition to assessing the circularity performance of these products.
LCA, which is a standardised method to quantify the environmental impacts of a product or a service throughout its life cycle, was used to assess environmental impacts. The Material Circularity Indicator (MCI), introduced by the Ellen McArthur Foundation, was applied to assess product-level circularity. Three different methods for modelling recycling were tested: the cut off approach, end-of-life net scrap approach and the more recently developed Circular Footprint Formula (CFF) within the Product Environmental Footprint (PEF) methodology. In addition, two improvement scenarios for the metal food packaging were defined: increased share of recycled content and change in location of the manufacturing
The results show that the carton food packaging in general is associated with lower environmental impacts compared to metal food packaging from a life cycle perspective. This is true for all environmental impact categories assessed in this study, except for land use and marine eutrophication. When using the material circularity Indicator, the metal packaging obtains a better product circularity score than the carton packaging. A higher value for the circularity is preferable as it indicates a more circular product according to the MCI, which can have a value between 0 and 1, where the latter indicates a fully circular product. The higher circularity score for the metal food packaging can be described by, for example, its relatively higher recycled content.
The results are dependent on the conditions assessed in this study, and it should be noted that a lot of generic data had to be applied, e.g. for the production processes of the food packaging, due to limited data availability. Recommendations for reduced environmental impacts of the metal packaging include to use recycled steel. As production of metal is relatively energy intensive, the type of energy carrier used in the manufacturing phase also contributes significantly to the total climate change impact. The use of renewable energy sources is therefore preferred. The transport from store to consumer and the waste treatment of the distribution packaging also contributes significantly to the total climate change impact. This study shows contrasting results between circularity and environmental impacts of the food packaging. The metal food packaging is associated with a higher product-level circularity but the carton food packaging in general associated with lower environmental impacts. This indicates the complexity of this type of assessments and the importance of considering both circularity and life cycle environmental impactsin these types of studies.
Det treårige forskningsprosjektet Innovativ avfallslogistikk har hatt som målsetting å generere kunnskap som skal bidra til mer kostnadseffektive og miljøvennlige løsninger for innsamling av avfall fra norske kommuner. Denne rapporten gir en oppsummering av kunnskapen som er generert i prosjektet.
Prosjektet har dokumentert at norske kommuner organiserer innsamling av avfall på svært ulike måter. Dette gjelder både hvilke målsettinger som ligger til grunn for avfallshåndteringen, organisasjonsform, hvorvidt de samarbeider med andre kommuner eller ikke, om de kjøper inn tjenestene eller gjør det i egen regi og hva slags innsamlingssystemer de har valgt (poser, beholdere, biler og drivstoff, nedgravde løsninger og avfallssug og sorteringsanlegg).
For å bidra til kunnskapsbaserte beslutninger har arbeidet i prosjektet bestått av tre hovedtemaer: beregninger av kostnader og miljøpåvirkning fra avfallslogistikk, analyser av innkjøp av tjenester knyttet til avfallslogistikk og analyse av avfallslogistikkens transformative potensial. Resultater fra hver av delene oppsummeres i denne rapporten, og korte sammendrag gis nedenfor.
Beregninger av kostnader og miljøpåvirkning fra avfallslogistikk
Målsettingene knyttet til sirkulærøkonomi og økt og separat utsortering av en rekke avfallstyper har skapt et behov for å kunne simulere hvordan ulike løsninger påvirker kostnader og klimagassutslipp for en gitt kommune eller avfallsselskap. Prosjektet har dermed utviklet en modell som kan beregne kostnader og klimagassutslipp knyttet til avfallsinnsamling fra husholdninger.
I denne rapporten vises ulike eksempler på bruk av verktøyet som demonstrerer hva slags typer analyser som kan gjennomføres med verktøyet og som representerer aktuelle problemstillinger for norske kommuner og avfallsselskaper:
Analysene viser at verktøyet er egnet for å finne ut hva som er de største kostnadsdriverne og hvor i verdikjeden de største klimagassutslippene oppstår, og hvilke innsatsfaktorer som har størst påvirkning. Resultatene fra casestudiene som er gjennomført viser at optimalisering av systemet med tanke på kostnader i mange tilfeller også vil gi reduserte klimagassutslipp. Andre ganger må det gjøres avveininger mellom økonomiske kostnader og klimatiltak, slik som for eksempel bruk av elektriske renovasjonsbiler, og mellom økonomiske kostnader og service ovenfor innbyggerne, som for eksempel distanse til beholder og avveininger mellom hente- og bringeordning. For å vurdere netto effekt av økt servicegrad, bør det også sees på hvordan sorteringsgraden faktisk påvirker innsamlingsgraden av de respektive avfallstyper, vurdert i et helhetlig perspektiv. I så fall bør økte klimagassutslipp fra innsamling av avfall med økt servicegrad vurderes opp mot potensielle reduserte klimagassutslipp som følge av at mer avfall sorteres ut til riktig behandling.
Innkjøpsanalyser
Innkjøpsanalysene som er gjennomført i prosjektet består av tre hoveddeler: dialog i anskaffelsesprosessen, analyser av gjennomføringen av anskaffelsesprosessen og anskaffelsesperioden og analyser av gjennomførte anskaffelser.
Anskaffelser og innovasjon: Den onde sirkelen
Forskningslitteraturen viser at økt grad av dialog har potensiale til å drive frem innovasjon gjennom felles verdiskaping, bedre samarbeid, økt transparens og økt effektivitet. Prosjektet har sett nærmere på hvorfor dialog er vanskelig i offentlige anskaffelser, og hvordan dette påvirker innovative anskaffelser. Intervjuer med relevante aktører avdekket et mønster der mange fortsetter å gjøre det man alltid har gjort, fordi man i begrenset grad gir og får innspill om noe nytt. Prosessen legger opp til liten grad av feedback, kommunikasjon og oppfølging i anskaffelsen, som igjen forhindrer at man bygger kompetanse. Gitt at målet er innovasjon og kompetanseutvikling, blir dette en ond sirkel. En viktig forklaring ligger i frykten for å gjøre feil med tanke på regelverket om offentlig anskaffelse.
Anskaffelsesprosessen: Den ufullstendige sirkelen
Prosjektet har sett på hvordan kommunene bruker anskaffelsesprosessen til å velge og følge opp leverandører, og lære av leverandørsamarbeid. Gjennom intervjuer ble det observert at det brukes betydelige ressurser på å utarbeide kravspesifikasjonen, og noe mindre på selve konkurransegjennomføringen, mens det brukes minst ressurser på kontraktsoppfølging. Dette kan betegnes som en lineær prosess som kan medføre at det i liten grad legges til rette for læring og forbedring. Det foreslås at det implementeres en prosess basert på Plan, Do, Check, Act, eller planlegge, utføre, kontrollere og korrigere for å fremme en lærende organisasjon. Sirkelen med de ulike oppfølgingsaktivitetene kan tilrettelegge for mer kontinuerlige forbedringer og kompetansebygging.
Styring og organisering: Den manglende sirkelen
En analyse av gjennomførte anskaffelser innenfor avfallslogistikk viser at måten kommunene har anskaffet innsamlingstjenestene for husholdningsavfall i stor grad har vært den samme i 30 år. Anskaffelsene er i hovedsak gjennomført etter åpen anbudskonkurranse og pris er vektet høyest blant tildelingskriteriene i kravspesifikasjonene, med noen få unntak. Dette fremmer en markedsøkonomi basert på konkurranse fremfor samarbeid, og viser liten grad av «innovative anskaffelser», noe som kan være en barriere for forbedringer og innovasjon.
Avfallslogistikkens transformative potensial
Avfallsbransjen står i likhet med resten av samfunnet overfor to megatrender som er forventet å skape radikal transformasjon: digitalisering og grønn omstilling. Forskningslitteraturen peker på noen sentrale dimensjoner og egenskaper for å oppnå transformasjoner: ‘retning’, ‘koordinering’, ‘etterspørsel’ og ‘refleksivitet’.
Når det kommer til retning og koordinering observeres et «fragmentert landskap», det vil si at kommuner har organisert avfallsinnsamlingen på svært ulike måter. Den norske kommunestrukturen med mange små kommuner og tradisjon for siloorganisering i kommunesektoren representerer dessuten et sårbart utgangspunkt for transformative endringer. Aktører med innovative ambisjoner opplever likevel at det er rom for endringer. Det er eksempler på aktører som får til mye, men manglende koordinering og mekanismer for oppskalering på tvers av kommuner synes å utgjøre sentrale barrierer for transformativ endring. Resultater fra prosjektet viser at det det ligger et potensiale i økt koordinering både internt i og mellom renovasjonsselskapene, samt eksternt i samspillet mellom offentlig og privat sektor
Når det gjelder etterspørsel og refleksivitet har prosjektet pekt på hvordan eierskap av, og investeringer i, fysisk infrastruktur kan føre til innlåsing i eksisterende forretningsmodeller og dermed hindre videre utvikling. Dette gjelder også økende grad av kildesortering, som krever en omfattende logistikkstruktur. Beregningene utført ved hjelp av verktøyet har vist at tilsynelatende små beslutninger kan ha stor påvirkning, og valg av biler og beholdere, både i egen regi og langvarige kontrakter, skaper langsiktige bindinger og strukturer som er krevende å endre. Det er derfor viktig å redusere risiko for overetablering av anlegg og utstyr. Dette kan gjøres ved hjelp av økt samarbeid, dialog og refleksivitet i form av mulighet til å justere kursen underveis, både med tanke på nye løsninger og eventuelt endringer i kontraktsperioden.
Konklusjon og videre arbeid
Prosjektet har utviklet modeller som kan bidra til økt kunnskap om avfallsinnsamling og hvordan denne kan forbedres, både når det gjelder kostnader og klimagassutslipp, og knyttet til hvordan gjennomføre og følge opp innkjøp av tjenester knyttet til avfallsinnsamling. Videre peker prosjektet på noen utfordringer knyttet til et «fragmentert landskap», det vil si den store variasjonen i hvordan kommunene organiserer og gjennomfører avfallsinnsamlingen, og som kan oppleves som en begrensning mot både felles og egen kompetanseutvikling og innovasjon. Disse barrierene kan reduseres ved å være bevisst på utfordringene og å sørge for samarbeid mellom kommuner og internt i kommunale etater, mellom kommuner og på tvers av privat og offentlig sektor. Disse innsiktene fra prosjektet vil kunne bidra til bedre beslutninger dersom de implementeres av kommuner og avfallsselskaper.
I et fremtidig arbeid er det ønskelig å koble sammen estimering av kostnader og klimagassutslipp med kunnskap om innkjøpsprosessen. Bruken av et slikt verktøy kan bidra til økt bevissthet og transparens om kostnader i innkjøpssitasjonen, og dermed redusere økonomisk risiko og oppnå en fornuftig kostnadsfordeling. Dette kan potensielt åpne opp muligheten for å øke fokus på miljø og kvalitet som innkjøpskriterier.
Videre er det viktig å understreke at innsamling av avfall ikke kan sees isolert fra hele avfallssystemet, og at økt utsortering og investering i gjenvinningsanlegg ikke bør være en barriere for å jobbe med avfallsminimering, økt gjenbruk og redusert forbruk. I det videre arbeidet vil det derfor være interessant å undersøke nærmere hvordan innsamlingssystemene kan bidra til økt utsortering, økt gjenbruk og redusert forbruk. I tillegg vil det være aktuelt å gjennomføre analyser som ser på sammenhenger mellom avfallssystemet og forbruksmønstre. Kommunene og avfallsselskapene kan med slik kunnskap i større grad bidra med en mer helhetlig tilnærming i overgang til en mer sirkulær økonomi.
Carbon capture and storage (CCS) is a way of reducing greenhouse gas emissions by capturing and subsequently storing carbon dioxide (CO2). CCU (carbon capture and utilization), on the other hand, represents a way of recycling the carbon in the captured CO2 by converting it to fuels or other products. The acronym CCUS describes systems including both utilization and storage of captured CO2.
This report gives an overview of the three potential CO2 emissions sources to be captured: direct air capture, geothermal power generation and industrial point sources with regard to their potential of being considered fossil or non-fossil CO2. Furthermore, the main pathways for utilising captured CO2 are presented.
CCU systems connect two (or more) product systems; the first being the source of the CO2 and the second being the CO2-based production system which uses CO2 as feedstock. Hence, CCU systems represent multifunctional systems due to the double role of CO2, representing both emission and feedstock. The report presents Life Cycle Assessment (LCA) methodology in general with a deeper focus on how to solve multifunctionality. The recommendation is to apply system expansion without substitution and compare the CCU system with a reference system. It is crucial to establish relevant system boundaries for the compared systems to ensure that all systems provide the same functions to society.
A practical LCA guideline for CCU value chains is finally presented in Appendix 1.
This literature review analyses the use of multi-criteria assessment (MCA) in food-based systems in order to assess sustainability. MCA is an umbrella term for methods and tools that can be used when different
indicators/criteria need to be incorporated in an analysis. Scoring and weighting can be used in MCAs to compare indicators with different units of measurement (Dean, 2022).
12 articles are reviewed, and they show different approaches to the MCA methodology. The studies use MCA to meet political goals/regulations, increasing resilience of farming systems, and/or for methodological development. The indicators assessed and the use of weighting differ between the studies. Furthermore, the methodological choices of an MCA and the use of software tools is assessed.
To conclude, there are several different ways of applying MCA in a study, and the methodology shows great flexibility in order to be fitted to the subject of study and the involved stakeholders. The weakness of MCA is that the methodology can be viewed as arbitrary, especially when applying weighting. Therefore, it is important to be transparent with regards to the methodolog
This report, A perspective on the state of the biogas industry from selected member countries, contains a compilation of summaries of country reports from member countries of IEA Bioenergy Task 37 (Energy from Biogas).
Each country report summary includes information on the number of biogas plants in operation, biogas production data, how the biogas is utilised, the number of biogas upgrading plants, the number of
vehicles using biomethane as fuel, the number of biomethane filling stations, details of financial support schemes in each country and some information on national biogas projects and production facilities. The publication is a regular update and is valid for information collected in 2020-2021. Reference year for production and utilisation is 2020, unless stated otherwise.
The chapter about Norway is written by senior researcher Kari-Anne Lyng at NORSUS.
Borregaard is a world leading biorefinery that produces biochemicals from Norway spruce (Picea abies). With increasing attention towards sustainable production and reduction of greenhouse gases, they experience increased interest in how emissions of greenhouse gases, and biogenic CO2 in particular, of a product are calculated and how potential greenhouse gas savings can be communicated. NORSUS has therefore been commissioned by Borregaard to summarize different standards and frameworks that are relevant for Borregaard’s reporting and communication of environmental information. Focus has been on CO2, with a special emphasis on biogenic CO2.
This report is a modified version of report OR.21.21 (Soldal and Modahl, 2021). In the current version,
confidential information from Borregaard has been removed.
This study was commissioned by Plastretur (Green dot Norway) and was carried out by NORSUS. The overarching goal has been to quantify the environmental impacts of Plastretur’s system for collection and material recycling of plastic packaging waste from households in Norway, and to identify factors which have large impacts on the results.
Life cycle assessment (LCA) methodology was applied to calculate the environmental impacts of collection and treatment of plastic waste resources, as well as the avoided emissions when recycled material substitute virgin material, and when energy from waste substitute other energy carriers. The current system of sorting and recycling plastic waste was compared with an alternative with no sorting, where plastic waste goes to incineration with energy recovery together with residual waste. The assessment is made for the treatment of the amount of plastic waste sorted from Norwegian households during a year.
The plastic collection of household plastic waste in Norway consists of three systems, and each system is analysed and summarised to quantify the annual environmental impacts:
Note that the results for the three systems are not comparable since different functional units (representing different plastic compositions and quality) have been used for each system.
Specific data were collected, e.g. from Plastretur, ROAF and IVAR, to represent these systems to the extent possible. When specific data were unavailable, generic data were utilized. Four environmental impacts were assessed, including climate change, freshwater eutrophication, fossil resource scarcity and fine particulate matter formation.
The results from the study show that the Norwegian system for sorting and material recycling of plastic waste contributes to a reduction in greenhouse gas emissions of approximately 72 300 tonnes CO2 equivalents compared to the alternative with no sorting where all plastic is incinerated instead. The system for sorting in households contributes to a reduction of approximately 51 000 tonnes CO2 equivalents, and the sorting facilities of ROAF and IVAR contribute to a reduction of approximately 10 500 and 10 800 tonnes CO2 equivalents, respectively, compared to incineration. In municipalities with sorting in households, each kg sorted contributes on average to an emission reduction at 2.0 kg CO2 equivalents compared to the same amount being incinerated.
The results from this study show that sorting and recycling of household plastic waste is preferable to incineration with energy recovery in terms of climate change and fossil resource depletion. In terms of fine particulate matter formation and freshwater eutrophication, on the other hand, incineration with energy recovery gives lower impacts. For fine particulate matter formation, this is a result of higher avoided impacts from incineration compared to avoided impacts from recycling and incineration of plastics in the systems for sorting and recycling of plastics. For freshwater eutrophication, this is due to impacts from the resources needed for recycling processes, such as electricity, while incineration avoids contributions to freshwater eutrophication when substituting Norwegian district heat generation.
Critical factors affecting the results include:
Transport and energy use have low impacts on the results.
In the future, Plastretur is advised to collect more specific data from the sorting- and recycling facilities, which to various extent had to be modelled using generic data. More information on recycling rates per plastic type, the quality and market of recycled materials and what type of material that is substituted by these recycled materials would be beneficial. Furthermore, Plastretur is advised to select sorting- and recycling facilities that produce high quality recycled material that in turn can substitute virgin plastics.
This project has not included a comparative assessment of the different sorting systems (sorting at source compared with residual waste sorting facilities). In such a study the comparison must be done based on the amount of plastic waste generated in the households. As more data is available for the different systems, it is recommended to set up analyses with the aim of a direct comparison of the different systems to better understand the implications of choosing one system over the other. In such a study, it would be interesting to address under what circumstances that one of these systems becomes preferable to the other. This could be done by, for example, assessing how well consumers need to sort the household plastic waste for the sorted at source system to be environmentally preferable over a sorting facility system where plastics are disposed with the residual waste.
This report is a delivery of the project Industrial CCS cluster at Øra and regionally, supported by CLIMIT.
The emission of greenhouse gases (GHG) from human activities is one of the most important environmental issues of the twenty first century. The largest source of GHG is carbon dioxide, which has increased tremendously in the last decades, mainly due to fossil fuels combustion for power generation and automotive transportation. CCS (carbon capture and storage) is a way of reducing greenhouse gas emissions by capturing and subsequently storing the carbon dioxide (CO2) permanently. CCU (carbon capture and utilization) represents a way of recycling the carbon in the captured CO2 by converting it to fuels or other products. The acronym CCUS describes systems including both utilization and storage of captured CO2.
This study has analysed systems for CCS (carbon capture and storage) and CCU (carbon capture and utilization) and compared these with their respective reference scenarios. The study has been carried out using Life Cycle Assessment (LCA) methodology according to the ISO-standards 14044/48 and guidelines provided for CCU value chains. The LCAs have been performed for two industrial cases: Norske Skog Saugbrugs, a paper production plant, and Sarpsborg Avfallsenergi (SAE), a waste to energy (WtE) plant
Waste 2 Power (W2P) – høyverdig energigjenvinning av plastavfall» (High quality energy recovery from plastic waste) is a pre-project (forprosjekt) in the regional development program FORREGION funded by the Research Council of Norway and administrated by Viken county council. The project begun with a collaboration between Vaia Miljø AS and NORSUS.
The project aims to understand the potential for commercializing a Waste to Energy prototype or Waste2Power (W2P) acquired by Vaia Miljø from Italy for energy recovery of waste and establish cooperation with relevant R&D actors. The project includes four main tasks covering the techno-economic analysis of the W2P technology (task 1), the development of an industrial plan based on the availability of plastic waste (task 2), a simplified environmental analysis by Life Cycle Assessment methodology (task 3), and the development of a plan for further research activities (task 4)”
Production of biogas from manure at a farm level is the very epitome of a sustainable bioenergy system. The system incorporates a circular economy decentralised production of organic biofertilizer and biogas for use in heat, power or transport fuel, whilst simultaneously reducing fugitive methane emissions from open slurry holding tanks, reducing smells and minimising pollution effects on rivers and wells. Why therefore is the practice of producing biogas from manure not more widespread? The characteristics of manure depend on farm animal source and the method of husbandry, which in turn leads to a wide range of levels of technically available manure resource and costs of biogas produced from manure. To exemplify this, IEA Bioenergy published this report which examines the potential of manure for utilization in biogas facilities across seven countries: Germany; Australia; Austria; Norway; Canada, Ireland and the UK. These countries have differing levels of biogas industry, very different farming practices and a range of climates. It is hoped that the country selection should allow the lessons learned from these seven countries to be applied to many countries across the planet.
Matsvinnet fra matbransjen, offentlig sektor og husholdningene utgjorde 400 000 tonn i 2020.
Dette kan omregnes til:
Og tilsvarer:
Fordelingen av totalt matsvinn (tonn) i 2020 for de ulike verdikjedeleddene er vist i figuren under. Figuren viser også endringen i prosent fra 2015 til 2020 (målt i kg/innbygger).
Matsvinnet er redusert for samtlige av verdikjedeleddene, og totalt er matsvinnet:
Dette tilsvarer:
Matsvinnet er mest redusert for relativt klimaintensive og dyre matvarer (kjøtt, ferdigmat og meierivarer), og minst for relativt billige og lite klimaintensive matvarer (brød, bakervarer, frukt og grønnsaker).
This report documents the modelling and environmental results for 8 products from Borregaard in Sarpsborg. The work has been performed from March 2020 to June 2021, and it is directly based on the work done in phase I/II in 2008, the 2010 update and the 2015 update. In this study life cycle assessment (LCA) methodology has been used.
For most indicators and products, the burdens have decreased compared with 2014. It is, however, difficult to draw conclusions regarding the lignosulfonates, as the LCA model has changed since the 2014 modelling. Steam, chemicals and direct emissions are the most important explanations for changed burdens for Borregaard’s products. Reduced direct emissions from the ethanol factory have contributed to reduced eutrophication burdens for several products.
The relative burdens of the life cycle phases are shown in Figure 1.
Figure 1 Relative results for the life cycle phases, from cradle to gate for four products from Borregaard, shown for the two indicators climate change and eutrophication. For the eutrophication indicator, the life cycle phase ‘Various’ is closely linked to direct emissions from Borregaard. Transport to customer is not included.
Burdens from production of liquid natural gas (LNG) and the use of LNG in the production process are important contributors to the climate change indicator for cellulose and ethanol. Production and transport of input chemicals are important for vanillin and hydrochloric acid, both with regards to climate change and eutrophication. Direct emissions at the Borregaard site are, however, the main contributor to eutrophication both for cellulose, ethanol, and vanillin.
Use of energy and chemicals, and direct emissions at the Borregaard site, are the most important contributors in the overall picture, and the share of renewable energy sources used for steam production affects all products.
Bergen kommune ønsket å gjennomføre et pilotprosjekt for å sette fokus på reduksjon av matsvinn ved to sykehjem. De to sykehjemmene var Fantoft og Lyngbøtunet.
Å redusere matsvinn er politisk forankret i Bergen kommune i Byrådets politiske plattform og vedtatte handlingsplan for mat, måltider og ernæringsarbeid i pleie- og omsorgstjenesten «Maten servert (2018-2023)».
Bergen kommune ønsket å kartlegge matsvinnet ved de to sykehjemmene Fantoft og Lyngbøtunet, implementere felles metoder og rutiner, kompetanseheving og etablering av en felles kultur for reduksjon av matsvinn. Kommunen ønsket bistand til oppstartsamling, sammenstilling av data etter to veierunder, en workshop for å identifisere og prioritere tiltak for å redusere matsvinn, og en felles workshop for å oppsummere resultatene. På begge sykehjemmene ble det frikjøpt en mindre stillingsprosent som fikk ansvaret for å pilotere prosjektet ved det enkelte sykehjem. Prosjektet er finansiert av Bergen kommune.
Prosjektet ble delt inn i 4 faser:
• Situasjonsanalyse med gjennomføring av måling av matsvinn, og sammenstilling av resultatene
• Planlegging og prioritering av tiltak hvor det ble gjennomført to separate workshoper med relevante ansatte på Fantoft og Lyngbøtunet for å identifisere og prioritere tiltak
• Gjennomføring med innføring av nye rutiner og tiltak for å redusere matsvinn og kompetanseheving
• Evaluering hvor det i forkant ble gjennomført en ny periode med måling av matsvinn, og gjennomføring av en felles workshop for ansatte på kjøkkenet og avdelingene ved de to sykehjemmene, Matvarehuset, og representanter fra Klimaetaten i Bergen kommune.
Å redusere matsvinnet i omsorgssektoren der det serveres mat vil, i tillegg til reduserte klimagassutslipp, bidra til reduserte innkjøpskostnader, bearbeidingskostnader og lønnskostnader. I tillegg kan svinnreduserende tiltak bidra til bedre holdninger hos ansatte slik at den enkelte får større bevissthet om matsvinn og endrer atferd privat. Svinnreduserende tiltak kan også bidra til bedre utnyttelse av råvarer og utvikling av nye retter med bruk av restemat.
Denne rapporten er en del av forskningsprosjektet Bærekraftig biogass, som er finansiert gjennom Forskningsrådets EnergiX-program.
Opprinnelsesgarantiordningen for elektrisitet er en europeisk ordning som er videreført og styrket i det reviderte fornybardirektivet (2018/2001/EU, ofte referert til som RED II). Ordningen inngår som en del av det felles rammeverket i det indre energimarked i EØS-området. Den ble innført med EUs første fornybardirektiv i 2001 for å gi forbrukere et prinsipielt valg. En opprinnelsesgaranti er et bevis på hvilke kilder en gitt mengde strøm er produsert fra. Ordningen ble innført med EUs første fornybardirektiv (Direktiv 2001/77/EC) i 2001 og er videreført i de reviderte fornybardirektivene (Direktiv 2009/28/EC og 2018/2001/EU). I henhold til EUs Eldirektiv (Direktiv 2009/72/EC) skal alle kraftleverandører informere sine kunder om hvordan kraften de solgte foregående år ble produsert. Dette kalles en varedeklarasjon.
I det reviderte fornybardirektivet av 2018 (RED II, Artikkel 19) er ordningen for opprinnelsesgarantier utvidet til også å omfatte gass (inkludert hydrogen), i tillegg til elektrisitet og varme/kjøling.
Den viktigste forskjellen mellom et opprinnelsesgarantisystem for elektrisitet (som eksisterer i dag) og for biogass, er bærekraftskriteriene med tilhørende krav til massebalanse, som kreves for bioenergi dersom den skal kunne inkluderes i et lands måloppnåelse for fornybar energi.
Det pågår et arbeid med å revidere CEN-standarden EN 16325 Guarantees of Origin related to energy – Guarantees of Origin for Electricity til også å omfatte gass, hydrogen, samt kjøling/varme, som antas ferdigstilt i løpet av 2022. Vurderingen av opprettelsen av et system med opprinnelsesgarantier for biogass bør derfor avventes og sees i sammenheng med dette arbeidet. I ovennevnte standard er det foreløpig lagt til grunn at det er frivillig å rapportere på bærekraftskriteriene.
Uavhengig av om det vurderes å innføre et opprinnelsesgarantisystem for biogass, anbefales det derfor å starte arbeidet med å utvikle en nasjonal database/register for flytende og gassformig drivstoff (jfr. RED II/artikkel 28), som inkluderer rapportering av bærekraftskriteriene. Det anbefales at dette arbeidet sees i sammenheng med tilsvarende arbeid som skal settes i gang i Sverige (Energimyndigheten, 2019a), som også har en større andel av sitt biogassvolum offgrid (leveres ikke inn på fells gassnett). I tillegg bør arbeidet med utvikling og oppretting av et slikt register samkjøres med det systemet som Miljødirektoratet i dag har for alle som omsetter biodrivstoff og flytende biobrensel om rapportering oppfyllelse av bærekraftskriteriene, og med dagens rapportering fra norske biogassanlegg til Miljødirektoratet og SSB. Resultatene fra dette arbeidet vil danne et viktig grunnlag for en vurdering av en fremtidig kobling av et slikt registeret til et eventuelt opprinnelsesgarantisystem for biogass.
NORSUS AS | Postal address: Stadion 4, N-1671 Kråkerøy, Norway | Email: post@norsus.no