Projects

The project SynoProtein (Carbon capture from syngas to Single Cell Protein (SCP) and use as fish feed Ingredient) started on September1st and it will end by March 2028.

Synoprotein is funded by the Horizon Europe programme under the call-JU-CBE-2022 (Circular Bio-based Europe Joint Undertaking).

The project’s coordinator is WAI ENVIRONMENTAL SOLUTIONS. WAI is a Norwegian technology company developing and implementing environmental technologies within wastewater treatment, bio-sludge treatment, nutrients and resources recovery, hazardous waste and soil remediation and aquaculture.

The main objective of SynoProtein is to develop and demonstrate a novel carbon-negative process that enables high value creation from sawmill by-products through carbon capture and use (CCU). The aim is to establish a sawmill by-products valorisation process in a continuous flow system at a pilot scale with a production capacity of 5 kg/day for Single Cell Protein (SCP) and biochar each (dry weight). Innovative processes are developed using forest residues to be converted to single cell protein for fish feed ingredients as alternative to the traditional climate and energy intensive soybean and resource-limited wild fish protein production and to biochar production for animal feed.  11 partners from four different European countries (Norway, Denmark, Sweden, and Germany) are part of the consortium representing industry, academia, and research institutes. For more information about the project see: https://www.cbe.europa.eu/projects/synoprotein

NORSUS is responsible for assessesing the potential environmental and social impacts of the novel SynoProtein solution by using environmental and social Life Cycle Assessment (LCA) methodologies. Data will be collected in the consortium from lab scale to pilot plant and published by the end of the project in European platforms. Comparison with the state-of-the-art of the technologies will also be established. Several environmental impact categories such as climate change, water scarcity, resource scarcity and biodiversity will be investigated. In addition, NORSUS will use the Responsible Research & Innovation (RRI) framework and will employ methods for involving the public in the development of the Synoprotein biobased value chains.

We acknowledge that the project is supported by the Circular Bio-based Europe Joint Undertaking (CBE-JU) and its members under Grant Agreement No. 101112345.

EarthresQue er et Senter for Forskningsdrevet Innovasjon (SFI) finansiert av Norges forskningsråd som går over 8 år og er bevilget 220 millioner kroner i støtte. Senteret er landsomfattende, og vil utvikle teknologier og systemer for bærekraftig håndtering og behandling av avfall og overskuddsmasser, inkludert forurenset masse og bruk av deponier. Prosjektet skal se på økonomisk og miljømessig forsvarlig forvaltning av overskuddsmasser (stein, løsmasser, organisk) f.eks. fra store infrastrukturprosjekter, og masser som allerede er lagt på deponi. I dag er det lite eller ingen insentiver eller krav for gjenbruk eller nyttiggjøring av disse massene og negative klima- og miljøeffekter fra slike prosjekter kan bli betydelige. Målet er å få på plass systemer for å utnytte disse ressursene.

NMBU er prosjekteier og leder prosjektet som består av 33 prosjektpartnere fra privat, offentlig og kommunal sektor, inkludert NORSUS. NORSUS har flere oppgaver i prosjektet, bl.a. har vi jobbet med mudringsproblematikken i Fredrikstad.

Her finner du rapporten Sirkulær massehåndtering Sjøgata, Bodø

The Exilva project is a part of Borregaard’s set-up and running of the first industrial scale plant for producing microfibrillated cellulose (MFC) in addition to develop advance market segments for the use of this product. It is funded under the BBI JU program of EUs Horizon 2020 effort, and Exilva MFC is produced at the flagship factory in Sarpsborg. In this project, NORSUS has used life cycle assessment (LCA) as a tool to scrutinise the social and environmental properties of microfibrillated cellulose and the applications to which Exilva MFC is used as ingredient. MFC can be used in a wide range of products, and it can enhance properties like rheology, surface area and water holding capacity.

Analyses of the climate change emissions from cradle to grave for products with and without Exilva MFC shows that the burdens are reduced by using MFC. The reductions are mainly caused by reductions in the use of chemicals, and because one can replace some ingredients with water. This leads to reduces emissions along the whole value chain, and especially for transport.

The reports from the EU project are confidential, however preliminary results were presented by Ingunn Saur Modahl and Ellen Soldal at the Tappi Nano conference in Wisconsin in 2018 . Ingunn presented results for MFC used in several applications . and Ellen focused on use of MFC used in beverage containers .

In this project, NORSUS has also published four LCA datasets in publicly available databases. In general, there are few LCA datasets available for free, and as of today no datasets for microfibrillated cellulose have been available at all. Hence, it is progress for the LCA society to have publicly available LCA data for MFC. This will make it possible for LCA practitioners to make their own models of product systems containing MFC, which can be useful for research and product development. Hopefully this can lead to reduced environmental burdens for several products in the future.

The EU funded Exilva project started in May 2016 and ended in April 2020. The research was supported by funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 709746.

The BioValueChain model was a three year long research project financed by the Norwegian Research Council. The purpose of the project was to contribute to developing efficient biogas value chains, both in terms of environmental and economic efficiency, and to describe how the framework conditions affect the biogas production in Norway.

The project has:

  • Developed and tested models for the calculation of environmental impacts of different configurations of biogas value chains
  • Developed economic models for actors in the value chain to test the economic sustainability and the effect of existing framework conditions, and to evaluate potential effects of political measures
  • Compared Norwegian and Danish biogas value chains with regards to framework conditions and economic measures
  • Developed an optimisation model for economy and greenhouse gas emissions reductions for livestock manure resources in a region in terms of biogas production at farm scale and centralised plants

Publications:

Biogassproduksjon fra matavfall og møkk fra ku, gris og fjørfe. Fase IV

The BioValueChain model: a Norwegian model for calculating environmental impacts of biogas value chains

Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration

Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting

The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark

Optimising Anaerobic Digestion of Manure Resources at a Regional Level

PhD thesis: Reduction of environmental impacts through optimisation of biogas value chains : drivers, barriers and policy development

For fjerde år på rad skal Østfoldforskning beregne Borregaards klimagassutslipp i henhold til GHG-protokollen. GHG-protokollen er en internasjonal anerkjent metode for beregning og rapportering av klimagassregnskap for bedrifter og organisasjoner.

Rapportering i henhold til GHG-protokollen skjer i tre ulike omfang, og de refereres til som Scope 1, Scope 2 og Scope 3. Scope 1 omfatter direkteutslipp av klimagasser innenfor egen virksomhet; Scope 2 omfatter indirekte utslipp av klimagasser fra innkjøpt elektrisitet, varme, kjøling og damp; mens Scope 3 omfatter andre indirekte utslipp av klimagasser som skjer andre steder i verdikjeden, f.eks produksjon av innkjøpte materialer. For å få en komplett beregning, rapporterer Borregaard inn sitt forbruk av materialer, kjemikalier og energibærere. Dette danner grunnlaget for beregningen av klimagassutslipp til Scope 3.

Siste fullstendige oppdatering av livsløpsmodellen var i 2016, da det vart lagt spesiell vekt på energimiksen i dampsystemet hos Borregaard og detaljering av ligninfabrikken. Dei siste åra er det gjort fleire endringar ved bioraffineriet, og Borregaard ønsker å vidareføre EPDane som går ut i 2021. I dette prosjektet skal difor alle data oppdaterast og det skal lagast nye EPDar, denne gongen også for saltsyre. Parallelt med dette arbeidet ønsker Borregaard å få utvikla EPDar av flytande og tørr lignin frå fabrikken i USA. I samband med dette skal Østfoldforskning bygge opp ein LCA-modell frå botn av.

Siste fullstendige oppdatering av livsløpsmodellen var i 2016, da det vart lagt spesiell vekt på energimiksen i dampsystemet hos Borregaard og detaljering av ligninfabrikken. Dei siste åra er det gjort fleire endringar ved bioraffineriet, og Borregaard ønsker å vidareføre EPDane som går ut i 2021. I dette prosjektet skal difor alle data oppdaterast og det skal lagast nye EPDar, denne gongen også for saltsyre. Parallelt med dette arbeidet ønsker Borregaard å få utvikla EPDar av flytande og tørr lignin frå fabrikken i USA. I samband med dette skal Østfoldforskning bygge opp ein LCA-modell frå botn av.

The heart of this project is to utilize the material nanocellulose in three application areas; paper and packaging, within petroleum industry and in tissue engineering through controlled engineering of this material.

Ostfold Research’s task is to develop a sustainability life cycle assessment for evaluating the environmental, social and economic aspects of cellulose nanofibrils value chains.

Screening LCA’s will be made throughout the development process to assess the sustainability of proposed solutions. The duration of the project is from November 2013 to August 2018”

Nordic consumers purchase 365 000 tonnes of new clothing and home textiles each year. After food, housing and mobility, textiles is our consumption area that causes most environmental impacts. Reusing and recycling used textiles can offset some of these impacts but with an increasing number of options available, government and business need more information to make decisions on which pathways to choose. The Nordic Council of Ministers commissioned a consortium, including Østfold Research (now NORSUS), to carry out an LCA study to compare the environmental benefits of treatment options. Reuse was found to give by far the greatest benefits, regardless of whether the textiles are reused in the Nordic region or exported for reuse elsewhere. Further down the waste hierarchy, recycling is a better environmental option than incineration, although the benefits are moderate compared to the benefits of reuse. The primary aim of the project was to provide a database that can assist policymakers and businesses to estimate the environmental benefits of strategies for gathering and treating discarded textiles. As such this report presents only a fraction of the results of the LCA modelling. Hundreds of additional results can be found in a number of spreadsheets that can also be downloaded.

Here the pulication «Gaining benefits from discarded textiles» can be downloaded.